The immune-modulatory effects of nonimmunotherapies

何肇基醫師 台大醫院胸腔內科

Immunotherapy in Lung Cander Phase 1 Nivolumab (CA209-003): 5-Year Estimates of OS

^aThere were 3 deaths between 3 and 5 years, all due to disease progression; 1 surviving patient was censored for OS prior to 5 years (OS: 58.2+ months)

Gettinger, S et al. J Clin Oncol 36:1675-1684, 2018

Not all patients benefit in IO monotherapy ≥ 2nd Line Phase III Trial: OS & PFS

Brahmer J et al. N Engl J Med 2015; 373:123-135 Borghaei H et al. N Engl J Med 2015; 373:1627-1639 Herbst RS et al. **Lancet**. 2016;387:1540-50 Rittmeyer A,Lancet 2017; 389(10066): 255–265.

Summary: phase III studies of anti-PDL1 and anti-PD1 therapies in previously treated NSCLC

	CheckMate 017 ¹ 72)		CheckMate 057 ¹ (n=582)		KEYNOTE-010² (n=1033)		OAK ³ (n=850)	
Non-selected Pts		ous	Non-squamous		All comers		All comers	
PD-L1 selected	No		No		PD-L1 ≥1%		No	
Median OS (months)	HR 0.62	2 6.0	HR 12.2	9.5	HR 	0.72 8.6	HF 13.8	9.6
	Nivo	Doc	Nivo	Doc	Pembro 2mg/kg	Doc	Atezo	Doc
Response Rate around 20% 2.3 vs 4.2 3.9 vs 4.0 2.8 vs 4.0							vs 4.0	
ORR, %	20% vs 9	9%	19% vs 12%		19% vs 10%		14% vs 13%	
Follow-up	Minimum fol 24.2 mon	llow-up nths	Minimum 24.2 m	follow-up nonths	Median 19.2 n	follow-up nonths	Minimun 19 n	n follow-up 10nths

Frontline IO monotherapy: Pembrolizumab in TPS ≥ 50%

KN 024

Key Eligibility Criteria

- Untreated stage IV NSCLC
- <u>PD-L1 TPS ≥50%</u>
- ECOG PS 0-1
- No activating *EGFR* mutation or *ALK* translocation
- No untreated brain metastases
- No active autoimmune disease requiring systemic therapy

Reck M et al. N Engl J Med 2016; 375:1823-1833

Frontline IO monotherapy: IMpower 110

No. at risk

Chemotherapy 98

100

90

80

70

60

50

40

30

20

10

107

98 89 85 80 66

No. at risk

Atezolizumab

Chemotherapy

Months

25 18 16 11

40 34

75 65 50 40 33 28 19 12 9 7 6

61 48

Overall Survival (%)

Spigel DR et al ESMO2019

Arm B (chemo)

n = 98

38.3

(28.5, 48.1)

21.6

(12.6, 30.6)

PFS: TC3 IC3

Atezo 8.1M

Chemo 5.0M

Arm A (atezo)

n = 107

59.8

(50.4, 69.2)

36.9

(27.0, 46.9)

2

Months

Atezolizumab 107 82 72 60 45 31 25 21 16 13 10

74 62 36 26 16 13 8 5 5

ICI monotherapy ORR

ORR

1st Line PD-L1 selected Pts

Combination immunotherapy for better OS

Cancer-immunity cycle

Combination Strategy for immunotherapy

Lapatinib Sorafenib Sunitinib Dasatinib Imatinib Sorafenib Cetuximab

> Dabrafenib Decitabine Erlotinib Gefitinib Trametinib

Anticancer agents have both tumor promoting and inhibitory effects

Chemotherapy, radiation, and molecularly targeted drugs generate host-mediated pro-tumorigenic and pro-metastatic effects
 Therapy-induced host effects support angiogenesis, metastasis, and resistance
 Host-derived tumor accessory cells and various secreted factors contribute to tumor recurrence

• Blunting these cellular and molecular hostmediated effects generated by anticancer drugs might improve overall therapeutic outcomes

Yuval Shaked Nat. Rev. Clin. Oncol. 13, 611–626 (2016).

Immune-modulatory effects

Chemotherapy Targeted therapy Anti-angiogenesis Radiotherapy

Immune-modulatory effects

Chemotherapy

Targeted therapy Anti-angiogenesis

Radiotherapy

Chemotherapy induced more genetic and epigenetic change: more resistance to treatment

Immunotherapy + Chemotherapy

- To enhance chemotherapy effect
 - Chemotherapy + immunotherapy
 - Chemotherapy

R

R

Platinum doublet chemotherapy !

- To enhance immunotherapy effect
 - Immunotherapy + chemotherapy
 - Immunotherapy

Platinum doublet chemotherapy ?

Cellular and molecular host factors generated in response to chemotherapy with poor immune-modulatory effects

Host cell	Accompanied factor(s)	Cytotoxic or cytotoxic-like drugs	Human/mouse (H/M)
EPCs	Not applicable	 Cyclophosphamide • Docetaxel • 5-FU • Paclitaxel • FOLFOX • Ca4-P/OXi-4503 	М
EPCs/CECs	SDF-1, G-CSF	• Paclitaxel • Ca4-P/OXi-4503	H/M
EPCs/CECs	MMP-9, VEGF-A	Ca4-P/OXi-4503	Μ
Pulmonary ECs	VEGFR1	Cisplatin • Paclitaxel	Μ
CD34+/CD133+ cells	VEGF-A/G-CSF	Ca4-P/OXi-4503	Н
Host cell EPCs EPCs/CECs EPCs/CECs Pulmonary ECs CD34+/CD133+ cells Thymic ECs TAMs (anti-inflammatory) CXCR4+ cel TAMs (M2/CD68/CD163) MDSCs Myeloid/macrophages Myeloid/macrophages Antigen-presenting cells BMDCs MDSCs/macrophages CD4+ T cells MSCs	TIMP-1/IL-6	Doxorubicin	Μ
	IL-6	Cisplatin Doxorubicin Epirubicin	Н
TAMs (anti-inflammatory) CXCR4+ cells	VEGF-A	 Cyclophosphamide Doxorubicin Docetaxel 5-FU Paclitaxel 	H/M
TAMs (M2/CD68/CD163)	Not applicable	Cisplatin Doxorubicin 5-FU	Н
MDSC	IL-6/IL-8/GM-CSF	• Gemcitabine • 5-FU	М
MDSCS	GM-CSF	Gemcitabine	Н
Myeloid/macrophages	Cathepsins	Doxorubicin Paclitaxel Etoposide	М
Myeloid/macrophages	Cathepsins	Doxorubicin Paclitaxel Etoposide	Н
Antigen-presenting cells	Not applicable	Epirubicin	M
BMDCs	MMP-2/MMP-9	Paclitaxel • FOLFOX	Μ
MDSCs/macrophages	IL-1β	• Gemcitabine • 5-FU • Paclitaxel	М
CD4+ T cells	IL-17	• Gemcitabine • 5-FU	Μ
MSCs	Polyunsaturated fatty acids	Cisplatin	H/M

Yuval Shaked Nat. Rev. Clin. Oncol. 13, 611–626 (2016).

T cell Activity: Control vs. Chemotherapy

Ho et al. Unpublished Data

Chemotherapy

- In the past decades, chemotherapy was considered an immunosuppressive modality in the treatment of cancer.
- However, accumulating evidence indicates positive immunologic effects of chemotherapeutic agents.

DNA damaging agents affect the immunogenicity of tumors

Brown JS et al. Br J Cancer 2018; 118, 312-324

Chemotherapy stimulated immune-based anticancer activity

- Chemotherapy may stimulate the immune system by
 - Lysing tumor cells to release cancer cell antigen^{1,2}
 - Activating dendritic cells³
 - Depleting immunosuppressive Tregs at low doses⁴
 - Increasing tumor-infiltrating lymphocytes (TILs)⁵

CT increased TIL number following neoadjuvant therapy in 278 patients with TNBC

- 1. Bracci et al. Cell Death Differ 2014
- 2. Mellman et al. Nature 2011
- 3. Tanaka et al. Cancer Res 2009
- 4. Banissi et al. Cancer Imm Immunother 2009
- 5. Dieci et al. Ann Oncol 2014

Immunologic effects of platinum chemotherapeutics on the tumor microenvironment.

- ATP release from cells dying from platinum exposure attracts
 DCs, which take up parts of dying cells that have cell surface expression of calreticulin.
- The maturation of DCs in the presence of platinum drugs results in downregulation of PD-L1 and PD-L2 on the DCs, increasing their T-cell activation potential.
- Platinum drugs inactivate STAT6 in the tumor cells, leading to decreased PD-L2 expression, resulting in enhanced recognition and killing by the tumor-specific T cells.
- Platinum induces upregulation of M6P receptor on tumor cells, which leads to enhanced tumor cell lysis by granzyme-B secreted by the activated T cells.

Hato SV, et al. Clin Cancer Res 2014;20: 2831–2837.

Increasing the mutational load in cancer cells (Szikriszt 2016; McGranahan 2016; Pardoll 2012; Rizvi 2015; Snyder 2014; Syn 2017a; Van Allen 2015). Depleting or reducing the activity of immune-suppressive regulatory T-cells and myeloidderived cell subsets (Kodumudi 2010; Nowak 2002; Pol 2015; Zitvogel 2008). Normalizing the tumour neovasculature allowing greater CD8+ T-cell infiltration.(Schwartz 2009; Motz 2014). Augmenting major histocompatilibity complex class *I expression* (de Biasi 2014; Galluzzi 2012). Enhancing the cross presentation of neoantigens through inducing immunogenic forms of tumour cell death (Galluzzi 2017; Pfirschke 2016; Pol 2015). Increasing the sensitivity of tumour cells to interferongamma (Hato 2014).

Syn NLX, et al. Cochrane Database of Systematic Reviews 2018, Issue 4. Art. No.: CD013009.

IO + CT vs. CT Meta-analysis: ITT group

CT + Immuno - OS

CT + Immuno - PFS

	Trial	No. pa	tients		HR [95% CI]	Trial	No. pa Immuno	atients Control		HR [95% CI] Immuno vs. control	% of cross over
_		mmuno	Control			IMPOW/ER 1501	400	400	山	0.78 [0.64:0.96]	
	IMPOWER 1501	400	400		0.62 [0.52;0.74]	IMPOWER 130	400	400		0.78 [0.04,0.90]	31.7%
						IMPOWER 150 ²	402	400	1	0.88 [0.72;1.08]	
	IMPOWER 132	292	286	H	0.60 [0.49;0.72]	IMPOWER 132	292	286		0.81 [0.64;1.03]	37.1%
	KEYNOTE 189	410	206	Ħ	0.52 [0.43;0.64]	KEYNOTE 189	410	206		0.49 [0.38;0.64]	41.3%
	IMPOWER 130	451	228	Ē	0.64 [0.54;0.77]	IMPOWER 130	451	228	₽	0.79 [0.64;0.98]	59.2%
	Total	1553	1120	ł	0.60 [0.54;0.65] p<0.0001	Total	1955	1520	♦	0.76 [0.69;0.83] p<0.0001	
Heterogeneity : p=0.42, I ² =0%			0 20	Heterogeneity : p=0.007, I ² =71%			<u> </u>	Arm B vs. Arm C			
Immuno better Control be			Control better		-	0.2	Immuno better Co	2.0 2.	Arm A vs. Arm C		

IO + CT vs. CT Meta-analysis: PD-L1 (-) group

PD-L1 NEGATIVE - PFS

PD-L1 NEGATIVE - OS

Immunotherapy + chemotherapy Chemotherapy backbone?

Non-squamous cell

- Pemetrexed + platinum maintenance with pemetrexed
- Bevacizumab + paclitaxel + carboplatin maintenance with bevacizumab

Squamous cell

- Paclitaxel + carboplatin
- Nab-Paclitaxel + carboplatin
- Gemcitabine + platinum
- Vinorelbine + platinum

Which is better?

Immune effects of selected chemotherapy used in NSCLC

Chemotherapy	Setting	Effect	Reference
Paclitaxel	Breast carcinoma	Favours tumor infiltration by CD68 macrophages Favours tumor infiltration by NK cells and CTLs	Denardo et al. 2011 Demaria et al. 2001
	Transgenic breast carcinoma	Boosts DC maturation and cross priming	Pfannenstiel et al. 2010
	Transgenic murine melanoma	Depletes circulating MDSCs	Sevko et al. 2013
Docetaxel	NSCLC	Depletes circulating Treg	Li et al. 2014
Vinorelbine	NSCLC	Increases CTL/Treg ratio (reduced activity of Treg)	Roselli et al. 2013
Gemcitabine	Transplantable murine lung carcinoma	Depletes circulating MDSCs	Sawant et al. 2013
	NSCLC	Depletes circulating Treg	Chen et al. 2015
Pemetrexed	Pancreatic cancer	Activates IFN gamma producing NK cells, but depletes CD45RO+ memory T cells	Davis et al. 2012

IO + Chemo Phase 3 in Non-sq

There is no intent to perform directly cross-trial comparison

IO + Chemo in Non-sq: All regimens work

Chemotherapy immune-modulatory effects

Neoantigen hydrophobicity Tumor immune Tumor neoantigen **IFNy signature** microenvironment Neoantigen burden Increase Tumor neoantigen CD8⁺ T-cell abundance Tumor mutational burden T-cell exhaustion signature Intratumor heterogeneity Ø.4 Ø.6 0.8 Correlation coefficient CPS PD-L1 protein expression Fraction of high PD-1 mRNA samples Checkpoint targets

Turn to hot tumor: Direct or indirect stimulatory effects on immune effectors

T cell function: Induce a transient lymphodepletion Refresh T cell

Modified from JAMA Oncol. 2019;5(11):1614-1618

Immune-modulatory effects

Chemotherapy Targeted therapy Anti-angiogenesis Radiotherapy

EGFR mutant TME

- Immune suppression environment:
- Low tumor-infiltrating lymphocytes (TILs)
- High Tregs
- High MDSCs
- High tumor-associated macrophages (TAMs)
- Immunoregulatory cytokines

 (immunosuppressive soluble factors, such as TGF-β, IL-10 and adenosine)
- Lower levels of human leukocyte antigen (HLA)-B expression
- Low TMB

Lin A et al. Molecular Cancer (2019) 18:139

T cell receptor repertoires in EGFR + vs wild type Less clonal expansion

EGFR mutations have a higher TCR β diversity and significantly lower numbers of predicted neoantigens than those without *EGFR* mutations (median: 57 [4-221] vs. 157 [47-247]; *P* = .03; Low clonal T cell expansion in tumors with *EGFR* mutations might be a critical factor related to the unfavorable response to ICI

EGFR mutation with low PD-L1 expression

	EGF	RWT	EGFR MUT		Л	Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl	
Ameratunga 2015	97	397	3	23	6.1%	2.16 [0.63, 7.41]		
Cooper 2015	15	237	0	33	2.3%	4.67 [0.27, 79.85]		
Huynh 2016	90	207	5	54	7.2%	7.54 [2.89, 19.69]		
Inamura 2016	20	97	4	93	6.6%	5.78 [1.89, 17.64]		
Ji 2016	22	40	18	60	7.7%	2.85 [1.24, 6.56]		
Kim 2015	57	178	0	7	2.2%	7.10 [0.40, 126.44]		
Mori 2017	61	160	46	136	9.1%	1.21 [0.75, 1.94]		
Rangachari 2016	21	58	0	13	2.3%	15.48 [0.88, 273.58]		
Song 2016	74	180	112	205	9.3%	0.58 [0.39, 0.87]	-	
Takada 2016	32	123	8	112	7.8%	4.57 [2.00, 10.42]		
Tang 2015	42	71	61	87	8.4%	0.62 [0.32, 1.19]		
Tsao 2017	79	265	5	36	7.1%	2.63 [0.99, 7.02]		
Yang 2014	22	66	43	97	8.5%	0.63 [0.33, 1.20]		
Yang 2015	37	87	9	18	7.0%	0.74 [0.27, 2.05]		
Zhang 2014	33	67	37	76	8.4%	1.02 [0.53, 1.97]	+	
Total (95% CI)		2233		1050	100.0%	1.79 [1.10, 2.93]	•	
Total events	702		351					
Heterogeneity: Tau ² = 0	0.63; Chi ² =	= 67.29,	df = 14 (l	> < 0.0	0001); l² =	= 79%		
Test for overall effect: 2	Z = 2.33 (P	= 0.02)	1					000
							PD-L1 positive PD-L1 negative	/e
7004					GLCI		<i>P</i> =0.014	
TCGA					P=0.04	4 100 -	PD-L1(TC3/	C3)
~ 1	•		5 ²]				PD-L1(TC1,2	2/IC1,2)
Vd	1		15 25-			80-	PD-L1(TC0/I	C0)
E 2-			a. 24-		-	60-		
ei ei			ê 2 ³ -					
			N2 22-			40-		
59 📫			E 21-					
			금 2°-		The set	20-		
-2		_	م ₂ .1			0-		
a mut	6R M			2 mi	2	- FR M	R nut SRawt	
4 ⁶ ⁶	0.			FOR		40.	4 ⁶ Y. 4 ⁶	

Dong ZY et al. Oncoimmunology 2017; 6(11): e1356145

EGFR mutant tumors: a lack of T-cell infiltration and low shrink proportion of PD-L1C/CD8C TILs

Dong ZY et al. Oncoimmunology 2017; 6(11): e1356145
EGFR-TKIs affect the TME in NSCLC in Pre-clinical model: Immunostimulatory effect

- Induction of class I (MHCI) and II (MHCII) molecules
- Promoting Foxp3 degradation to attenuate the inhibitory function of Tregs
- Reducing the infiltration of Tregs in the TME and inhibiting tumor growth
- Enhancing the cytotoxicity of cytotoxic T lymphocytes (CTLs)
- Reduce T cell apoptosis, and increase IFN-γ secretion

EGFR TKI altered TME toward immunosuppression : animal model

Treg ratio increase

CD8 initial increase then decrease

Jia Y et al. Int. J. Cancer: 145, 1432–1444 (2019)

Afatinib decrease CD8 T cell proliferation

search engine against SwissProt database.

Identification of CAD as an afatinib-targeted protein in Jurkat T cells

Tu et al. unpublished data

Clinical trials: Targeted therapy + immunotherapy more toxicities without better response

Clinical trial number	Agent	Grade 3/4 side effects
NCT02088112	Gefitinib plus durvalumab	alanine aminotransferase (ALT) elevation (65%)
		aspartate aminotransferase (AST) elevation (45%)
NCT02143466	Osimertinib plus durvalumab	Interstitial lung disease (38%)
NCT02013219	Erlotinib plus atezolizumab	ALT elevation (7%)
		Pyrexia (7%) Rash (7%)

TATTON trial subgroup Osimertinib plus durvalumab RR no increase

Ahn MJ, et al. ELCC 2016 Ahn MJ et al. Expert Opin Drug Saf. 2017 Apr;16(4):465-469

Population: evaluable for response set; data cut off: 13 Nov 2015

Studies of EGFR TKI + Immune checkpoint inhibitor

	Gettinger ¹ n= 21	Ma/ Rudin ^{2, 6} n=28	Gibbons ³ n=20	Ahn ⁴ n=34	Planchard⁵ n=26	Yang ⁷ n=19	Yang ⁸ n=14
Key patient criteria	EGFR+, TKI treated or naïve	EGFR+, TKI naïve or 1 prior non EGFR TKI tx	EGFR TKI naïve, n=20	EGFR+, TKI treated or naïve	EGFR+, TKI treated	EGFR TKI naïve	EGFR+, TKI treated
TKI treatment	Erlotinib 150mg qd	Erlotinib 150mg qd 1w run in	Gefitinib 250mg qd: concurrent or 4w lead-in	Osimertinib 80mg qd	Gefitinib 250mg qd 2 week run in	Erlotinib 150mg n=12 Or Gefitinib 250mg n=9	Osimertinib 80mg qd
IO treatment	Nivolumab 3mg/kg q2w	Atezolizumab 1200mg q3w	Durvalumab 10mg/kg q2w	Durvalumab 3- 10mg/kg q2w	Tremelimumab 3- 10mg/kg q4w	pembrolizumab 2 mg/kg q3w	Durvalumab 10mg/kg q2w
Gr 3-4 TRAE	10% diarrhea	7% ALT, 7% Rash, 7% fever	55% Hepatic	16% ILD	27% diarrhea	8% skin rash in erlotinib, 71.4% liver toxicity in gefitinib,	8%
ORR	15%	75% ⁶	79%	70% (in TKI naïve)	0%	Erlotinib 41.7% Gefitinib 14.3% (4/7 not evaluable)	64%
Other	PFS 5.1m OS 18.7m	PFS 15m ⁶ DoR: 19m ⁶	PFS 21.7m DoR 20.3m	DoR: 7.4m	NA	Erlotinib PFS 19.5m OS NR Gefitinib PFS 1.4 m OS 13m	DoR 21.2m

1. Gettinger JTO 2018, 2. Ma ESMO Asia 2016, 3. Gibbons ELCC 2016, 4. Ahn ELCC 2016, 5. Planchard ESMO 2016, 6. Rudin WCLC 2018. 7. Yang JTO 2019;14::553-9. 8. Yang JTO 2019;14:933-9

Studies of ALK TKI + Immune checkpoint inhibitor

	Spigel ¹ n=13	Felip² n=36	Kim ³ n=21	Shaw ⁴ n=28	Shaw ⁴ n=12
Key patient criteria	ALK+, treatment naïve	ALK+, treatment naïve/ prior Tx	ALK+, treatment naïve	ALK+, treatment naïve	ALK/ ROS1/ MET-ve, ≥1 treatment
TKI treatment	Crizotinib 250mg bd	Ceritinib 450mg bd or 300mg bd	Alectinib 600mg bd (C1: 7 day lead-in)	Lorlatinib 100mg qd	Crizotinib 250mg bd
IO treatment	nivolumab 240mg q2w	nivolumab 240mg q2w	Atezolizumab 1200mg q3w	Avelumab 10mg/kg q2w	Avelumab 10mg/kg q2w
Gr 3-4 TRAE	38% Hepatic	25% ALT 22% GGT	18.9% Rash 9.5% ALT	18.9% Rash 9.5% ALT	16.7% ALT
ORR	38%	68.8%	85.7%	85.7%	16.7%
Other	NR		PFS 21.7m DoR 20.3m	DoR: 7.4m	DoR: 4.1m

1. Spigel JTO 2018, 2. Felip ASCO 2017 , 3. Kim ASCO 2018, 4. Shaw ASCO 2018

EGFR TKI immune-modulatory effects

T cell function

Our unpublished data

Immune suppression microenvironment

Modified from JAMA Oncol. 2019;5(11):1614-1618

Immune-modulatory effects

Chemotherapy Targeted therapy Anti-angiogenesis Radiotherapy

Angiogenic Factors and Immune Cells

- Immunosuppression by modulating the functions of innate and adaptive immune cells
- Increasing the number and enhancing the suppressive functions of Treg cells and TAMs
- Dendritic cells lose their ability to mature and present antigens
- CTLs have a decreased capacity to traffic to the tumor, proliferate, and produce cytokines

Anti-angiogenesis reprogramme the immunosuppressive TME

Antiangiogenic drugs offer only a modest survival benefit of a few weeks to months, with rare durable responses.

Fukumura D et al. Nat Rev Clin Oncol 15 (5), 325-340.

IMpower150 Study Design

^a Patients with a sensitizing *EGFR* mutation or *ALK* translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies. ^b Atezolizumab: 1200 mg IV q3w. ^c Carboplatin: AUC 6 IV q3w. ^d Paclitaxel: 200 mg/m² IV q3w. ^e Bevacizumab: 15 mg/kg IV q3w.

#ASCO18 Slides are the property of the author permission required for reuse.

OS in the ITT-WT (Arm B vs Arm C)

 Statistically significant and clinically meaningful OS benefit with atezolizumab + bevacizumab + chemotherapy vs bevacizumab + chemotherapy was observed

^a Stratified HR. Data cutoff: January 22, 2018

#ASCO18 Slides are the property of the author, permission required for reuse.

OS in the ITT-WT (Arm A vs Arm C)

 A trend toward OS benefit was observed with atezolizumab + chemotherapy vs bevacizumab + chemotherapy, but the efficacy boundary has not yet been crossed and will be tested again at the time of the final analysis

^a Stratified HR. Data cutoff: January 22, 2018

#ASCO18 Slides are the property of the author permission required for reuse.

Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of EGFR/ALK+ Patients^a

Arm B^b vs Arm C

^a Patients with a sensitizing EGFR mutation or ALK translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies.

^b One patient had EGFR exon 19 deletion and also tested ALK positive per central lab. ^c Unstratified HR.

Data cutoff: January 22, 2018

#ASCO18 Slides are the property of the author permission required for reuse

Phase 1 ramucirumab plus pembrolizumab in patients with NSCLC: KEYNOTE-021 cohorts A-CA phase 1 study

Herbst et al, # 378 ASCO 2016

Decreased Tumor Burden NSCLC (RECIST 1.1)

Herbst et al, # 378 ASCO 2016

Tumor Response Over Time in Patients with NSCLC

Herbst et al, # 378 ASCO 2016

Anti-angiogenesis + IO: Ongoing clinical trial

- APPLE (atezo + chemo +/- beva): phase III
- Atezo + Carbo + Paclitaxel + Beva in EGRF Mutation or ALK Translocation NSCLC: phase III
- Nivo + paclitaxel + carboplatin + bevacizumab: phase III
- Atezolizumab Plus Bevacizumab in First Line NSCLC Patients (TELMA): phase II
- Atezolizumab Versus Atezolizumab Plus Bevacizumab as First Line in NSCLC Patients (BEAT): phase II
- Carboplatin + Pemetrexed + Atezolizumab + Bevacizumab in Chemotherapy and Immunotherapynaïve Patients With Stage IV Non-squamous NSCLC: phase II
- Atezolizumab and Bevacizumab in Epidermal Growth Factor Receptor (EGFR) Mutant Non-Small Cell Lung Cancer in Patients With Progressive Disease After Receiving Osimertinib phase II
- Pembrolizumab Plus Bevacizumab for Treatment of Brain Metastases in Metastatic Melanoma or Non-small Cell Lung Cancer phase II
- Platinum-Pemetrexed-Atezolizumab (+/-Bevacizumab) for Patients With Stage IIIB/IV Non-squamous NSCLC With EGFR Mutations, ALK Rearrangement or ROS1 Fusion Progressing After Targeted Therapies (GFPC 06-2018) phase II

Anti-angiogenesis immune-modulatory effects

No effect in tumor neoantigen

Immunosupportive TME

No effect in T cell function

Immune-modulatory effects

Chemotherapy Targeted therapy Anti-angiogenesis Radiotherapy

Immunologic Effects of Radiotherapy

Radiotherapy as immunostimulant

- RT Dose: low dose may have immunosuppressive responses, but the enhanced immunogenicity does not seem to extend beyond a certain dose range
- **RT Timing and Sequencing:** MHC-I-associated peptide pool increase between 8h and 11 D (in vitro), T-cells initial decline in week 1, but quickly recovered and even increased in weeks 3–5, sequencing RT ICI is proved by PACIFIC trial, concurrent studies ongoing
- **RT Target Volume and Organs:** avoid RT induced lymphopenia and decrease heart lung exposure. RT to tumor-associated draining lymph nodes (DLN) affects adaptive immune responses and combinatorial efficacy (in vitro)

IO RT combinations in locally advanced NSCLC

References	Phase	NSCLC setting (accrual)	Immunotherapy	Radiotherapy	Design	Primary outcome
ANTIGEN-SPECIFIC IMMU	INOTHERAPY					
Ohyanagi et al. (48)	I	Stage III, unresectable, CR/PR/SD after CRT ($N = 6$)	Tecemotide	≥50 Gy, sequentially or concurrently with CT	CRT > tecemotide	\geq 1 AE in 83.3% of pts, all G1
Butts et al. (49)	IIB	Stage IIIB, CR/PR/SD after CRT $(N = 65)^{\circ}$	Tecemotide	Dose NS, sequentially or concurrently with	unotherap	Median OS 30.6 vs. 13.3 m (HR 0.548, 95% Cl 0.301–0.999) ^c
Mitchell et al. (50) (START)	Ш	Stage III, unresectable, CR/PR/SD after CRT ($N = 1,239$)	Tecemotide	-specific	 CRT > tecemotide^b CRT > placebo 	Median OS 58.7 vs. 57.3 m (HR 0.89; $p = 0.111$)
Patel et al. (51)	II	Stage III, unresectable, non-squamous (At a fit	in antige.	o6 Gy/33 fx, concurrently with CT	CRT > CT > tecemotide + bevacizumab	\geq G3 toxicity in 11 pts, G3 hypertension (<i>n</i> = 6)
Brunsvig et al. (52)	II	stanical benefit	GV1001 + GM-CSF	60 Gy/30 fx, concurrently with CT	CRT > GV1001 + GM-CSF	No treatment-related SAE
Pujol et al. (53)	NO	Converse $(N = 12)^{\circ}$	MAGE-A3 immunotherapeutic	NS	CT > RT > MAGE-A3	Treatment-related AE in 7/12 pts; all <g3. and="" cd4+="" cd8+<br="" induced="">T-cell response in 5/6 and 2/6 pts resp.^c</g3.>
IMMUNE CHECKPOINT BL	LOCKADE					
Antonia et al. (31) (PACIFIC)	III	Stage III, unresectable ($N = 713$)	Durva	54–66 Gy, concurrently with CT	 CRT > durva CRT > placebo 	Median OS NR vs. 28.7 m (HR 0.68; <i>p</i> = 0.0025); median PFS 17.2 vs. 5.6 m (HR 0.51)
Durm et al. (54)	П	Stage III, unresectable, CR/PR/SD after CRT (N=92)	Pembro	combination	CRT > pembro	Median TMDD 22.4 m (95% Cl 17.9-NR)
Lin et al. (55) (DETERRED)	II	Stage III, unresectable (N = 40)	OS in ICI	concurrently with CT	 CRT > CT + atezo CRT + atezo > CT + atezo 	\geq G3 atezo-related toxicity in 6 pts; G5 TE fistula (<i>n</i> = 1). G3 radiation pneumonitis (<i>n</i> = 1)
Peters et al. (56, 57) (NICOLAS)	IA/II	Stage III, unreset 79)	Nivo	 66 Gy/33 fx, concurrently with CT 66 Gy/24 fx, sequentially after CT 	CRT + nivo > nivo	No ≥G3 post-RT pneumonitis, 1-year PFS 50%

Durvalumab vs Placebo After Concurrent CRT in Unresectable Stage III NSCLC (PACIFIC)

- Primary endpoints: PFS, OS
- Secondary endpoints including: 12, 18 mos PFS, ORR, DoR, the time to death or distant metastasis, the time to second progression, safety

Durvalumab vs Placebo After Concurrent CRT in Unresectable Stage III NSCLC (PACIFIC Trial)

Updated **PFS 17.6 m vs. 5.6 m**

Gr 3-4 adverse events 30.5 % vs. 26.1% Discontinued 15.4% vs. 9.8%

> Antonia SJ, et al. N Engl J Med 2017;377:1919-29 Antonia SJ, et al. N Engl J Med 2018; 379:2342-2350

ETOP NICOLAS Trial

Pneumonitis G2 2 patients G3 6 patients

Primary endpoints:

 Pneumonitis-free rate of grade ≥ 3 (CTCAEV4.0) anytime during 6 months postradiotherapy.

•Hierarchically tested: 1-year progression-free survival (PFS) (from chemotherapy start)

Hierarchical design: IF safety proven→Efficacy evaluation:

•1-year PFS, sample size n=74
•H₀: PFS₀ ≤ 45% vs H₁: PFS₁ > 60% (1-sided alpha=5%, power=83%)
•Success rule: at least 41 patients reach 1-year

without PFS event (i.e., maximum 33 PFS events)

Results: Progression-free survival

Conclusion

•Based on the formal hierarchical efficacy analysis, we cannot reject the null hypothesis of 1-year PFS rate ≤45% versus 60% (p=0.23).

•Overall (N = 79patients), the estimate of 1-year survival rates 50.1% (95% CI: 38.3, 60.7%).

•NICOLAS PFS with a median of 12.7 months, compares favorably to studies in the same population, all reporting less than 12 months median.

IO RT combinations in metastatic NSCLC

References	Phase	NSCLC setting (accrual)	Immunotherapy	Radiotherapy	Design	Primary outcome		
NON-SPECIFIC IMMUNOTHERAPY								
van den Heuvel et al. (84)	IB	Stage IV, CR/PR/SD after 1st line CT (N=13)	NHS-IL2	20 Gy/5 fx, single pulmonary nodule	RT > NHS-IL2	nunotherapy		
Golden et al. (85)	NS	Stage IV, \geq 3 sites of measurable disease, SD/PD on CT ($N = 18$) ^a	GM-CSF	ific or nons	pecific IIII	unse in 4/18 pts		
Ohri et al. (86)		ofit in antig	en-spec	intrathoracic site of disease	SBRT + CDX-301	5/9 pts with PFS at 4 m		
Ar dinic	al ben	ene						
Pa NO CIIIIN		Stage IV, PR/SD after 1st line CT or TKI, \geq 2 sites of disease (N = 26)	CV9202	20 Gy/4 fx, single lesion	 RT + CT + CV9202 RT + CV9202 RT + TKI + CV9202 	≥G3 treatment-related AE in 4/26 pts		
IMMUNE CHECKPOINT BL	OCKADE							
Formenti et al. (88)	1/11	Stage IV, \geq 2 measurable metastatic sites (N = 39)	lpi	 30 Gy/5 fx 27 Gy/3 fx Single lesion 	RT + ipi	CR, PR and SD in 2, 5 and 5/21 evaluable pts resp.		
Tang et al. (89)	I	Stage IV, ≥ 2 sites of disease (N = 21)	Pembro	 50 Gy/4 fx, single liver or lung lesion 45 Gy/15 fx, SIB allowed up to 60 Gy larger field 	RT + pembro	G2 and G3 treatment-related AE in 8 and 3/21 pts resp.		
Kumar et al. (90) (PEAR)	I	Stage IV, requiring palliative thoracic RT ($N = 14$)	Pembro	• 20 Gy/5 fx	l combinat			
Decker et al. (91)	1/11	Stage IV, ≥ 2 measurable disease sites ($N = 8$)	wial ava	ilable in is	+ pembro	No \geq G2 treatment-related AE during and post-SBRT		
Moreno et al. (92)		No Phase III		27 Gy/3 fx	 RT + cemi Cemi	G5 treatment-related pneumonitis (<i>n</i> = 1). ORR 18.2 vs. 40.0%; DCR 72.7 vs. 60/0%		
Alameddine et al. (93)	1	Stage IV, ≤ 10 cc untreated brain metastases ($N = 7$) ^a	Nivo	15–20 Gy/1 fx, brain metastasis	SRS + nivo	Treatment-related AE in 3/5 evaluable pts		
Miyamoto et al. (94)	NS	Stage IV, ≥ 1 lesion amenable to SBRT outside brain/bone ($N = 6$)	Nivo	25.5–48 Gy/3–4 fx, single lesion	SBRT > nivo	G3 pneumonitis in 1/6 pts		
Theelen et al. (95) (PEMBRO-RT)	Ш	Stage IV, \geq 2 separate lesions, after \geq 1st line treatment ($N = 76$)	Pembro	24 Gy/3 fx, single tumor site	SBRT > pembroPembro	ORR at 12 w 36 vs. 18% (p = 0.07)		
Luke et al. (96)	I	Stage IV, ≥ 2 metastases, after ≥ 1 st line treatment (N = 7) ^a	Pembro	30–50 Gy/3–5 fx, 2–4 metastases, partial for metastases >65 mL	SBRT > pembro	\geq G3 treatment-related toxicity in 6/73 pts		
Bauml et al. (97)	II	Stage IV, \leq 4 metastases (N = 45)	Pembro	Stereotactic or standard fraction, dose NS	LAT > pembro	PFS after LAT 19.1 m vs. historical 6.6 m ($p = 0.005$)		

Spaas M and Lievens Y. Front Med (Lausanne) 2019

Radiotherapy immune-modulatory effects

Low dose immunosuppression Higher dose immunosupportive with limitation

No effect in T cell function (avoid RT induced lymphopenia)

Conclusions

- Anticancer agents have both immunosuppressive and immune supportive effects.
- Chemotherapy has promising immune-modulatory effects, also proven by phase III clinical trials
- TKIs (for driver mutation) immune-modulatory effects is not clear. IO + TKI: no clinical benefit but higher toxicity. Sequential or intermittent combination?
- Anti-angiogenesis has a modest survival benefit with promising immune-modulatory effects, clinical trials ongoing
- Radiotherapy modify TME and enhance IO effect in locally advanced NSCLC. In metastatic disease, combination trials are ongoing

Thanks for your attention !

host effects generated by cancer therapies based on preclinical and clinical evidence

Host effect	In animal models	In humans
	Cytotoxic and cytotoxic-like agents	
Endothelial-precursor-cell mobilization	+	+
MDSC colonization of treated tumors	+	+
Macrophage colonization of treated tumors	+	+
Macrophage residence at perivascular sites	+	+
Astrocyte contributions to drug resistance	+	NA
MSC contributions to drug resistance	+	NA
BMDC contributions to metastasis	+	NA
VEGFR1-positive pulmonary endothelial cell contributions to metastasis	+	NA
Cathepsin release from macrophages	+	+
Induction of proinflammatory factors	IL-6, IL-1β	IL-6
Induction of cytokines and growth factors	GM-CSF, G-CSF, VEGF-A, SDF-1	GM-CSF, G-CSF, VEGF-A
Upregulation of prostaglandins and growth-promoting factors	+	NA
	Molecularly targeted drugs	
MDSC colonization of tumors following antiangiogenic therapy	+	ΝΑ
Induction of cytokines and growth factors following antiangiogenic drug therapy	SDF-1, osteopontin, SCF-1, G-CSF, VEGF-A, Bv8 (Prokineticin-2)	VEGF-A, PIGF
Reduction in soluble factors following antiangiogenic therapy	sVEGFR2	sVEGFR2
Induction of factors following EGFR inhibition	TGF-α, amphiregulin, epiregulin	TGF-α, amphiregulin
	Radiation	
Circulating endothelial-cell mobilization	NA	+
Myeloid cell colonization of irradiated tumors	+	NA
Macrophage colonization of irradiated tumors	+	NA
Induction of circulating factors	VEGF-A, SDF-1, SCF-1, Arg1 (Arginase-1), Fizz (Resistin), IL-1β, IL-10, MMP-9, CD206 (mannose receptor), TGF-β	IL-6, SCF-1
	Surgery	
Endothelial-progenitor-cell mobilization	NA	+
Reduced NK-cell activity	+	+ Yuval Shaked Nat. Rev. Clin. Oncol. 13, 611–62
Increased number of circulating tumor cells	NA	+

PD-L1>50

■ PFS ■ OS ■ 1-Y-OS %

70

CT Selected Randomized Trials of Combination IO + CT vs. C CT of Combination

Trial reference	Drug	Phase no. pts	Histology	PD-L1	FU time median mo.	HR OS (95% CI) <i>P-</i> value	HR PFS (95% Cl) <i>P</i> -value
KN-189 (1)	Pembrolizumab ± Platinum-Pem	III 616	NonSq	any	10.5	0.49 (0.38–0.64) <0.001	0.52 (0.43–0.64) <0.001
KN-021 (2, 3)	Pembrolizumab ± Carbo-Pem	II 123	NonSq	any	10.6	0.90 (0.42–1.91) 0.39	0.53 (0.31–0.91) 0.010
KN-407 ^a (4)	Pembrolizumab ± Carbo-(nab)Pac	III 559	Sq	any	7.7	0.64 (0.49–0.85) 0.0008	0.56 (0.45–0.70) <0.0001
IMPower131 (5) ^a	Atezolizumab ± Carbo-nabPac	III 683	Sq	any	9.8 ^b	0.96 (0.78–1.18) 0.69	0.71 (0.60–0.85) 0.0001
IMPower150 (6)	Atezolizumab ± Carbo-Pac-Beva	III 696	NonSq	any	15.5	0.78 ^a (0.64–0.96) <i>P</i> = 0.02	0.62 (0.52–0.74) <i>P</i> < 0.001
IMPower150bis (7)	Atezolizumab + Carbo-Pac vs. Carbo-Pac-Beva	686°	NonSq	any	20.0	NR	0.88 ^a (0.72-1.08) 0.20
IMPower132 (8) ^a	Atezolizumab ± Platinum-Pem	III 578	NonSq	any	NR	0.81 (0.64–1.03) p = 0.08	0.60 (0.49–0.72) P < 0.0001
IMPower130 (9)	Atezolizumab ± Carbo-nabPac	III 679	NonSq	any	13.0 ^b	0.79 (0.64–0.98) 0.03	0.64 (0.54–0.77) <0.0001
CM-227 (10)	Nivolumab ± Platinum-Pem in NonSq Platinum-Gem in Sq	III 363	NonSq (273) Sq (90)	<1%	11.2 ^b	NR	0.74 (0.58–0.94) <i>P</i> = NR

Addeo A, et al. Front Onclo April, 2019. https://doi.org/10.3389/fonc.2019.00264
Objective Response Rate

Zhou Y, et al. Journal for Immunotherapy of Cancer (2018) 6:155

Favours

Progression Free Survival

Zhou Y, et al. Journal for ImmunoTherapy of Cancer (2018) 6:155

Zhou Y, et al. Journal for ImmunoTherapy of Cancer (2018) 6:155