

HOKKAIDO UNIVERSITY Graduate School of Medicine

Lessons from the HiCARAT study: Hokkaido-based Investigative Cohort Analysis for Refractory Asthma

December 7th , 2019. Taiwan

Masaharu Nishimura, Hokkaido COPD cohort study investigators

Professor emeritus, Hokkaido University Housi General Medical Clinic and Hokkaido Institute of Respiratory diseases

COI disclosure

Masaharu Nishimura

Relevant financial relationships with a commercial interest:

Research grants from AstraZeneca, Kyorin, and MSD

Asthma

Definition

Characterized by repetitive cough, wheezing, dyspnea,

reversible airway narrowing, and airway hyperresponsiveness.

Important features for diagnosis of asthma

- 1. Paroxysmal dyspnea, wheezing, repeated cough
- 2. Reversible airflow limitation
- 3. Airway hyperresponsiveness
- 4. Atopy: IgE antibodies against environmental allergens
- 5. Airway inflammation:

Increased eosinophils in sputum and peripheral blood high ECP

Creola bodies

increased fraction of exhaled nitric oxide (FeNO)

6. Differential diagnosis:

Exclude diseases caused by other cardiopulmonary disorders

(Japanese Guideline for Adult Asthma 2012)

Diagnosis of COPD

1. Postbronchodilator FEV1/FVC < 0.70

2. Excludes <u>other diseases</u> characterized by airflow limitation

- -• Asthma
 - Tuberculosis
 - Diffuse pan bronchiolitis (DPB)

(Japanese Guideline for COPD ver 4)

"Asthma syndrome"

Phenotypic categories

	Atopic	Non-atopic
	High IgE ————	Low IgE
	Single allergen	- Multiple allergens
	Child-onset	- Adult/Late-onset
Sputum e	osinophilic —— neutrophilic —	— paucigranulocytic
	High FeNO	Low FeNO
	High periostin	Low periostin

Treatment steps for asthma

		Treatment step 1	Treatment step 2	Treatment step 3	Treatment step 4
	ICS	Inhaled corticoste- roid (low dose)	Inhaled corticoste- roid (low to medium doses)	Inhaled corticoste- roid (medium to high doses)	Inhaled corticosteroid (high dose)
Long-term management agents	Basic treatment	If the above agent cannot be used, use one of the fol- lowing agents. • LTRA • Theophylline sus- tained-release preparation (unnecessary for rare symptoms)	If the above agent is ineffective, con- comitantly use one of the following agents. • LABA (a compounding agent can be used) • LTRA • Theophylline sus- tained-release preparation	Concomitantly use one or more of the agents below. • LABA (a compounding agent can be used) • LTRA • Theophylline sus- tained-release preparation	Concomitantly use multiple agents of those below. • LABA (a compounding agent can be used) • LTRA • Theophylline sus- tained-release prep- aration If poorly controlled with all of the above agents, add either or both of the agents below. • Anti-IgE antibody \$
	Additional treatment	Antiallergics other than LTRA ⁺	Antiallergics other than LTRA [†]	Antiallergics other than LTRA ⁺	Antiallergics other than LTRA ⁺
Exacerbation	treatment [¶]	Inhaled SABA	Inhaled SABA	Inhaled SABA	Inhaled SABA
				Anti-IL4,13 antibody	Anti-IL5 antibody Anti-IL5R antibody Anti-IL4,13 antibody

(Japanese Guideline for Adult Asthma 2012)

T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma (Woodorff PG, et al. A

(Woodorff PG, et al. AJRCCM 2009)

Asthma: response to ICS

Non-eosinophilic cor ticosteroid unresponsive asthma

Ian D Pavord, Chris E Brightling, Gerrit Woltmann, Andrew J Wardlaw

(Pavord ID, et al. Lancet 1999)

	Sputum eo<3%	Sputum eo≥3%
	Eos <3%	Eos ≥3%
Number	9	14
Age (years)	53	45
Male	5	11
Atopy	2	8
Current smoker	3	1
ΔFEV_1 (mL)	100 (-193 to 394)	142 (-5 to 289)
∆Symptom VAS (mm)	-0.7 (15.4 to -16.8)	-24·4 (-12·5 to -36·3)
ΔPEF amplitude % mean	-3·2 (4·3 to -10·7)	-7.0 (-2.5 to -11.6)
ΔPC_{20} (doubling doses)	0 (-1·2 to 1·2)	2·1 (1·3 to 3·0)
Decrease sputum eos (fold)	1.6 (0.98 to 2.7)	7·1 (3·7 to 13·5)

Patient details with mean (95% CI) change in measures after treatment with <u>budesonide</u> in those stratified according to sputum eosinophil (eos) count

To evaluate the effect of smoking on asthma phenotypes • • •

Asthmatic subjects

Decline in Lung Function in the Busselton Health Study

The Effects of Asthma and Cigarette Smoking

(AL James et al. AJRCCM 2005)

Effect of smoking on (airway) inflammation (Matsumoto H, et al., Allergol Int 2013)

Smokers VS.	Non-smokers
-------------	-------------

 Table 1
 Inflammation in smoking asthmatics

Authors, Published year	Subjects, Smoking status, Condition of treatment	Pack-years	Age, Mean (range) or mean ± SD	Samples	Effects of smoking
Boulet LP, 20067	22 current smokers	14.0 ± 7.6	31 (20-44)	Induced	Neutrophil counts †
	27 never-smokers No use of ICS	0 ± 0	29 (20-42)	sputum	Eosinophil counts →
Chalmers GW, 20018	31 current smokers	21.0 ± 16.6	36.3 ± 10.6	Induced	Neutrophils †
	36 never-smokers No use of ICS	0 ± 0	36.0 ± 8.9	sputum	(both counts and propor- tions)
					Eosinophils ↓
					(both counts and propor- tions)
St-Laurent J, 20089	12 current smokers	16.7 ± 2.2	32.7 ± 2.3	Bronchial	Neutrophil elastase,
	12 never-smokers No use of ICS	0 ± 0	25.8 ± 2.3	biopsies	IFN-γ, and IL-8 †
Broekema M, 200910	35 current smokers	3 (0-64) 15 (0.4-47)	50 (21-64)	Bronchial biopsies and	Neutrophils → in biop- sies (current and ex)
	66 never-smokers	0 (0-0)	47 (19-71)	induced sputum	Eosinophils ↓ in biop- sies (current and ex)
	44% used ICS				Sputum neutrophil counts ↓ (current)
					Sputum neutrophil counts → (ex)
					Sputum eosinophil counts → (current and ex)
Sunyer J, 200311	301 current smokers 406 ex-smokers		34.5 ± 9.5	Blood	Eosinophil proportions ↓
	713 never-smokers				
Nagasaki T, 201391	46 current smokers	30 ± 19	47 ± 13	Blood	Neutrophil counts 1
J	65 ex-smokers	27 ± 22	61 ± 15		Eosinophil counts †
	196 never-smokers	0 ± 0	49 ± 20		
	No use of ICS				

• Smoking inhibits eosinophlic airway inflammation.

(Thatcher TH, et al. Am J Physiol Lung Cell Mol Physiol 2008)

(Botelho FM, et al. Am J Respir Cell Mol Biol 2011)

(Melgert BN, et al. Am. J. Respir. Cell Mol Biol 2004)

• Smoking enhances eosinophlic airway inflammation.

(Moerloose KB et al. AJRCCM 2005)

(Nakamura Y et al. JACI 2008)

(Van Hove CL, et al. Respir Res 2008)

Effect of smoking on (airway) inflammation (Matsumoto H, et al., Allergol Int 2013)

	Smokers	s vs.	Non-sm	okers	
Table 1 Inflammation	n in smoking asthmatics				
Authors, Published year	Subjects, Smoking status, Condition of treatment	Pack-years	Age, Mean (range) or mean ± SD	Samples	Effects of smoking
Boulet LP, 2006 ⁷	22 current smokers 27 never-smokers No use of ICS	14.0 ± 7.6 0 ± 0	31 (20-44) 29 (20-42)	Induced sputum	Neutrophil counts ↑ Eosinophil counts →
Chalmers GW, 20018	31 current smokers 36 never-smokers	21.0 ± 16.6 0 ± 0	36.3 ± 10.6 36.0 ± 8.9	Induced sputum	Neutrophils † (both counts and propor-
 Neutrophili Eosinophili 	Smoking	on on	↓ <i>→</i> ?	^{۱d} ??	Eosinophils ↓ (both counts and propor- tions) Neutrophil elastase, IFN-γ, and IL-8 ↑ Neutrophils → in biop- sies (current and ex) Eosinophils ↓ in biop- sies (current and ex) Sputum neutrophil counts ↓ (current) Sputum neutrophil counts → (ex) Sputum eosinophil counts → (current and ex) Eosinophil proportions ↓
Nagasaki T, 201391	713 never-smokers 46 current smokers 65 ex-smokers 196 never-smokers No use of ICS	30 ± 19 27 ± 22 0 ± 0	47 ± 13 61 ± 15 49 ± 20	Blood	Neutrophil counts ↑ Eosinophil counts ↑

Hokkaido-based Investigative Cohort Analysis for Refractory Asthma (Hi-CARAT)

(NO. UMIN 000003254)

- Patients diagnosed with severe asthma by respiratory physicians based on the ATS criteria of severe/refractory asthma (*AJRCCM 2000*) were enrolled at Hokkaido University Hospital and 29 affiliated hospitals and clinics between February 2010 and September 2012.
- We attempted to recruit patients with severe asthma, including smokers.

Additional criteria for patients

When patients were well-controlled under the current medications (not fulfilled any of minor characteristics 2, 4, and 5 at the entry), these subjects were confirmed that they experienced episodic deterioration of symptoms, urgent care visits, and rescue use of short-acting bronchodilators when current medication was reduced within one year.

(Kimura H, et al. Ann Am Thorac Soc. 2017)

(Konno S, at al. Ann Am Thorac Soc 2018)

Hokkaido-based Investigative Cohort Analysis for Refractory Asthma (Hi-CARAT)

(NO. UMIN 000003254)

- Patients diagnosed with severe asthma by respiratory physicians based on the ATS criteria of severe/refractory asthma (*AJRCCM 2000*) were enrolled at Hokkaido University Hospital and 29 affiliated hospitals and clinics
- We attempted to recruit patients with severe asthma, *including smokers*.

Smoking Rate (HiCARAT)

(NO. UMIN 000003254)

Cluster analysis

• An "data-dependent classification approach," in which subjects are grouped on the basis of multiple similarities

What's the aim of "Cluster analysis"?

- A process of knowledge discovery
- A process of development of novel hypotheses

via classification of subjects into a limited number of clusters on the basis of our existing knowledge and an *a priori* hypothesis.

Premature hypothesis

Cluster analysis

Strong hypothesis

A significant step toward a stronger hypothesis from our premature hypothesis

What's the aim of cluster analysis?

Inconclusive results regarding the effect of <u>smoking</u> on (airway) <u>inflammation</u> in asthma

via classification of subject a numited number of clusters on the basis of our **Premature hypothesis**: priori hypothesis.

- The effects of smoking on inflammation in asthma varies.
- Smoking does not affect all asthmatic subjects in the same way.

A significant step toward a stronger hypothesis from our premature hypothesis

Measurements

The following clinical parameters were evaluated in all subjects <u>during a 2-day stay at Hokkaido University Hospital</u>.

- **Questionnaires** (onset age, AQLQ, smoking habit • •)
- Anthropometric measurements
- Pulmonary function tests

(including BDR; salbutamol and oxitropium bromide)

- CT imaging (Chest, Sinus, Abdominal fat)
- Measurement of biomarkers
 - •peripheral eo count •Total serum IgE •allergen specific IgE
 - sputum analysis (cell differentiation)
 - •FeNO

Cytokines/Chemokines (sputum supernatant)

Selection of clinical variables for cluster analysis

Smoking • Smoking status (current or ex/never) • Pack-yrs **Obesity** • Body mass index (BMI) Inflammation • Peripheral eosinophil count • FeNO **Pulmonary** function •%FEV1 (max value) •FEV1/FVC •%DLCO/VA *IgE* • Total serum IgE • Atopic status (specific IgE)

Others •Gender •Age •Onset age

Hierarchical clustering (Ward's method)

Severe asthma (N=127)

(Konno S, et al. Ann Am Thorac Soc 2018)

Sputum supernatant

(Konno S, et al. Ann Am Thorac Soc 2018)

Decline in Lung Function in the Busselton Health Study

The Effects of Asthma and Cigarette Smoking

(AL James et al. AJRCCM 2005)

Novel hypothesis proposed by cluster analysis

Asthma severity

(Konno S, et al. Ann Am Thorac Soc 2018)

Summary I

Effect of smoking on asthma phenotypes

• Cluster analysis yielded novel hypotheses regarding the effect of smoking on airway inflammation in severe asthma.

- Two distinct types of pathogenesis may exist in relation to the role of smoking in decline of pulmonary function and eventually in asthma severity.
- This might explain the inconclusive results of previous reports regarding the effect of smoking on airway inflammation in asthma.

Goals for asthma treatment

(Wenzel SE. Nat Med. 2012)

Goals for asthma treatment

(Wenzel SE. Nat Med. 2012)

Aim

• The aim of this study was to characterize the clinical features associated with asthma exacerbation from data collected during a 3-year follow-up of severe asthmatic subjects.

Follow-up protocol in Hi-CARAT

3-year-follow-up

常見以テロイド寺場

· 単の目辺・田家県 (Aun-1) ととろに解決して

下さい。

日から

日まで

Medication adherence data

	Year 1			Year 2			Year 3		
Adherence (%)	Oral	Inhaled	Trans- dermal	Oral	Inhaled	Trans- dermal	Oral	Inhaled	Trans- dermal
99-100	80 (72.1%)	75 (67.0%)	4 (50.0%)	82 (78.1%)	69 (63.3%)	6 (66.7%)	78 (76.5%)	74 (69.2%)	4 (57.1%)
90-99	27 (24.3%)	30 (26.8%)	3 (37.5%)	20 (19.0%)	38 (34.9%)	2 (22.2%)	20 (19.6%)	31 (29.0%)	2 (28.6%)
80-90	2 (1.8%)	6 (5.4%)	0	2 (1.9%)	1 (0.9%)	1 (11.1%)	3 (2.9%)	2 (1.9%)	1 (14.3%)
70-80	0	1 (0.9%)	1 (12.5%)	1 (1.0%)	1 (0.9%)	0	1 (1.0%)	0	0
0-70	2 (1.8%)	0	0	0	0	0	0	0	0
All	111	112	8	105	109	9	102	107	7

Characteristics (N=105)

Male sex, N (%)	45 (42.9%)	Blood eosinophil, cells/µL	197.0 (0.52)
Age at enrollment, years	58.5 ± 12.1	Serum IgE, IU/mL	138.5 (0.70)
Asthma duration, years	19.7 ± 14.6	Sputum Eosinophil, %	8.0 (0.8-30.6)
Smoking status (Current/Ex/Never)	11/56/38	FeNO, ppb	30.2 (0.36)
Pack years	5.5 (0-23.4)	Serum periostin, ng/mL	80.3 (0.21)
BMI, kg/m ²	25.5 ± 5.0		
Daily ICS dose, μg (BUD Eq)	1638 ± 518.8	FEV ₁ , %predicted	91.4 ± 18.9
Maintenance OCS use, N (%)	39 (37.1%)	FEV ₁ /FVC, %	66.3 ± 12.7
Atopy, N (%)	65 (61.9%)		

Data are shown as mean \pm SD, median (IQR), geometric mean (log ₁₀ SD) or number (%).

Distribution of exacerbations in 3 years

Factors associated with the next year asthma exaxcerbartion

Exacerbation on 2nd year

	OR	95%CI	P-value
Exacerbation during the 1 st year	10.1	3.63-28.0	< 0.0001

Exacerbation on 3rd year

	OR	95%CI	P-value
Exacerbation during the 1 st and 2 nd year	33.7	7.90-144.2	< 0.0001

Logistic regression analysis

Adjusted by age, gender, yearafter diagnosis of exacerbation, atopy, BMI, smoking status

3-Year Follow up

Biomarkers according to exacerbation status

Biomarkers according to exacerbation status

Characteristics according to exacerbation status

		Type of exacerbation					
	All (N = 105)	CNE CNE (N = 39)	IE (N = 51)	CFE CFE (N = 15)	P-value	P for trend*	
Male sex, N (%)	45 (42.9)	14 (35.9)	26 (51.0)	5 (33.3)	.259	n/a	
Age at enrolment, y	58.5 ± 12.1	$\textbf{57.3} \pm \textbf{11.8}$	60.0 ± 12.2	56.3	.456	n/a	
Asthma duration, y	19.7 ± 14.6	$\textbf{16.8} \pm \textbf{11.1}$	22.0 ± 16.5	19.3 ± 15.4	.242	n/a	
Smoking status (Current/Ex/Never)	11/56/38	4/17/18	7/29/15	0/10/5	.272	n/a	
Pack years	5.5 (0-23.4)	4.5 (0-17.1)	7.4 (0-30.9)	4.0 (0-11.6)	.237	n/a	
Pack years \geq 10, N (%)	46 (43.8)	14 (35.9)	25 (49.0)	7 (46.7)	.448	n/a	
Body mass index, kg/m ²	25.5 ± 5.0	25.7 ± 5.9	25.5 ± 3.9	24.7 ± 5.7	.795	n/a	
Daily ICS dose, μg^a	1638 ± 518.8	1674.4 ± 462.7	1611.3 ± 455.4	1640 ± 819.2	.852	n/a	
Maintenance OCS use, N (%)	39 (37.1)	13 (33.3)	17 (33.3)	9 (60.0)	.141	n/a	
Atopy, N (%)	65 (61.9)	26 (66.7)	30 (58.8)	9 (60.0)	.740	n/a	
ACT	21.0 (17.0-23.0)	22.0 (18.3-23.8)	20.0 (16.3-23.0)	20.0 (15.3-20.8)	.107	.039	
AQLQ	5.5 (4.9-6.3)	5.7 (4.9-6.3)	5.5 (4.9-6.3)	5.1 (4.3-6.1)	.341	.160	

3-Year Follow up

Blood eosinophils (/µL)

Multivariate Analysis

Type of exacerbation						
CNE	IE	CFE	P-value,	P-value	P-value	
(N = 49)	(N = 34)	(N = 19)	Crude	Model 1	Model 2	
190.6 (0.50)	181.7 (0.46)	289.2 (0.38)	0.281	0.428	0.778	
19.8 (0.27)	26.1 (0.36)	35.3 (0.36)	0.014	0.016	0.017	
	CNE (N = 49) 190.6 (0.50) 19.8 (0.27)	CNE IE $(N = 49)$ $(N = 34)$ 190.6 (0.50) 181.7 (0.46) 19.8 (0.27) 26.1 (0.36)	CNE IE CFE (N = 49) (N = 34) (N = 19) 190.6 (0.50) 181.7 (0.46) 289.2 (0.38) 19.8 (0.27) 26.1 (0.36) 35.3 (0.36)	CNE IE CFE P-value, (N = 49) (N = 34) (N = 19) Crude 190.6 (0.50) 181.7 (0.46) 289.2 (0.38) 0.281 19.8 (0.27) 26.1 (0.36) 35.3 (0.36) 0.014	CNE IE CFE P-value, P-value (N = 49) (N = 34) (N = 19) Crude Model 1 190.6 (0.50) 181.7 (0.46) 289.2 (0.38) 0.281 0.428 19.8 (0.27) 26.1 (0.36) 35.3 (0.36) 0.014 0.016	

Table 5. Comparison of the blood eosinophil count and FeNO among exacerbation status groups in two-year follow-up after Visit 1 (Analysis 2)

• Crude

- Model 1: Age, gender, BMI smoking status
- Model 2: Model 1+ exacerbation status during the 1st year

Cox Proportional Hazard model

Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids

(Kanemitsu Y, et al. JACI 2013)

TABLE IV. Estimated effects of clinical indices and serum periostin on a decline in FEV₁ of 30 mL or greater per year

	Univariate analysis			Multivariate analysis		
	Estimates	95% CI	P value	Estimates	95% CI	<i>P</i> value
Treatment step, 5 vs 2 to 4*	1.63	0.51 to 2.60	.004	1.24	0.078 to 2.30	.04
History of admission due to asthma	1.09	0.37 to 1.90	.003	0.70	-0.11 to 1.50	.09
ICS daily maintenance dose (µg)	0.001	0.00 to 0.002	.01	_		
Chronic sinusitis	0.82	0.11 to 1.53	.03	0.61	-0.15 to 1.37	.12
Smoking history, ex vs never	0.87	-0.002 to 1.74	.05	0.98	0.030 to 1.93	.04
Log serum periostin (ng/mL)	2.96	0.78 to 5.13	.008	_		
Periostin group, high vs low [†]	1.03	0.33 to 1.72	.004	0.87	0.11 to 1.63	.03

Summary II

- Fifteen patients (14.3%) were frequent exacerbators in 3 years analysis among 105 severe asthmatics.
- Frequent exacerbators displayed high blood eosinophils and FeNO levels.
- Frequent exacerbations in previous year were significant associated factors with frequent exacerbations in next years.
- FeNO levels were significant associated factors with frequent exacerbations independent of exacerbations in previous year.

Future Planning

⁽Wenzel SE. Nat Med. 2012)

Thank you very much for your kind attention.

Hokkaido University