Molecular Mechanisms of Ventilator-Induced Lung Injury

12/07/2019

Tzi-Hsing Huang (黃次雄)

RRT. Department of Respiratory Therapy Chang Gung Memorial Hospital at Chiayi 6, Sec West, Chia-Pu Road, Pu-Tzu City, Chiayi County, Taiwan 61363 +886-5-3621000 ext 2549 (Office) +886-920-463015 (Cell) E-mail: world@cgmh.org.tw

Definition

Ventilator-induced lung injury (VILI)
 Ventilator-associated lung injury (VALI)-a causative relationship between lung injury and the mechanical ventilator cannot be proven.

Timeline of bench to bedside research on VILI

AJRCCM. 2015; 191(10):1106–1115

Acute respiratory distress syndrome (ARDS)

DIRECT LUNG INJURY INDIRECT LUNG INJURY Common causes Common causes Pneumonia Sepsis Severe trauma with Aspiration of gastric contents shock and multiple Less common causes transfusions Pulmonary contusion Less common causes Fat emboli Near-drowning Cardiopulmonary bypass Drug overdose Inhalational injury Reperfusion pulmonary edema Acute pancreatitis after lung transplantation or Transfusions of blood pulmonary embolectomy products

N Engl J Med. 2000;342(18):1334-1349

The New England Journal of Medicine

© Copyright, 2000, by the Massachusetts Medical Society

VOLUME 342

May 4, 2000

NUMBER 18

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK*

- The results showed a relative risk reduction of mortality by 22% in patients ventilated with the lower tidal volume.
- This indicates that mortality attributable to ventilatorinduced lung injury (VILI) is at least 9 to 10%.

Mechanisms

- Alveolar overdistension (volutrauma)
- Atelectrauma
- Biotrauma

Volutrauma and Atelectrauma

Chest 2016; 150(5):1109-1117

Biotrauma

How to treat or prevent VILI?

- Lung Protective Ventilation (Precision Ventilation)
- Prone Positioning
- Biomarkers and Pharmacologic Strategies (ARDS heterogeneity)

Current Clinical Practice

Α

Chest 2016; 150(5):1109-1117

Mechanisms of alveolar macrophage in VILI

J Clin Invest. 2002;110(11):1603-1605. Am J Physiol Lung Cell Mol Physiol 2006; 291: L1191–L1198, 2006.

Mechanisms of pulmonary neutrophil sequestration in VILI

Nature Medicine. 2006; 12, 280 - 281 Am J Physiol Lung Cell Mol Physiol 2004; 287: L902–L910 J Clin Invest. 2002;110(11):1603-1605.

	Table 1 Phe	able 1 Phenotype of the two best-characterized monocyte subsets in various mammals*							
	Antigen	Human CD14 ^{hi} CD16 ⁻ 'inflammatory' monocytes	Human CD14+CD16+ 'resident' monocytes	Mouse CCR2+ CX ₃ CR1 ^{low} 'inflammatory' monocytes	Mouse CCR2 ⁻ CX ₃ CR1 ^{hi} 'resident' monocytes	Rat CD43 ^{low} 'inflammatory' monocytes	Rat CD43 ^{hi} 'resident' monocytes	Pig CD163 ⁻ 'inflammatory' monocytes	Pig CD163 ⁺ 'resident' monocytes
	Chemokine r	eceptors							
	CCR1	+	-	ND	ND	ND	ND	ND	ND
<	CCR2 [‡]	+	-	+	_	+	_	ND	ND
	CCR4	+	-	ND	ND	ND	ND	ND	ND
	CCR5	-	+	ND	ND	ND	ND	ND	ND
	CCR7	+	-	ND	ND	+	-	ND	ND
	CXCR1	+	_	ND	ND	ND	ND	ND	ND
	CXCR2	+	-	ND	ND	ND	ND	ND	ND
	CXCR4	+	++	ND	ND	ND	ND	ND	ND
	CX ₃ CR1 [‡]	+	++	+	++	-	+	ND	ND
	Other receptors								
	CD4	+	+	ND	ND	+/-	++	ND	ND
	CD11a	ND	ND	+	++	ND	ND	+	++
C	CD11b	++	++	++	++	++	++	ND	ND
	CD11c [‡]	++	+++	-	+	-	+	+	++
	CD14	+++	+	ND	ND	ND	ND	++	+
	CD31	+++	+++	++	+	ND	ND	ND	ND
	CD32	+++	+	ND	ND	+++	+	ND	ND
	CD33	+++	+	ND	ND	ND	ND	ND	ND
	CD43	ND	ND	-	+	-	+	ND	ND
	CD49b	ND	ND	+	-	ND	ND	ND	ND
	CD62L [‡]	++	-	+	-	+	-	ND	ND
	CD80	ND	ND	ND	ND	ND	ND	+	++
	CD86	+	++	ND	ND	ND	ND	+	++
	CD115	++	++	++	++	ND	ND	ND	ND
	CD116	++	++	++ [§]	++ [§]	ND	ND	ND	ND
	CD200R	ND	ND	ND	ND	+	-	ND	ND
_	F4/80	ND	ND	+	+	ND	ND	ND	ND
$\boldsymbol{<}$	Ly6C	ND	ND	+	-	ND	ND	ND	ND
	7/4	ND	ND	+	-	ND	ND	ND	ND
14	MHC class II	+	++	-	-	ND	ND	+	++

Nat Rev Immunol 2005;5:953–964.

- -

This information is current as of May 18, 2011

Mobilization and Margination of Bone Marrow Gr-1 ^{high} Monocytes during Subclinical Endotoxemia Predisposes the Lungs toward Acute Injury

Kieran P. O'Dea, Michael R. Wilson, Justina O. Dokpesi, Kenji Wakabayashi, Louise Tatton, Nico van Rooijen and Masao Takata

J Immunol 2009;182;1155-1166

Role of Lung-marginated Monocytes in an *In Vivo* Mouse Model of Ventilator-induced Lung Injury

Michael R. Wilson¹, Kieran P. O'Dea¹, Da Zhang¹, Alexander D. Shearman¹, Nico van Rooijen², and Masao Takata¹

¹Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom; and ²Vrije Universiteit, Vrije Universiteit Medisch Centrum, Department of Molecular Cell Biology, Faculty of Medicine, Amsterdam, The Netherlands

Am J Respir Crit Care Med Vol 179. pp 914–922, 2009

To establish an murine model of ventilator-induced lung injury

Control

LPS+LTV

LPS+HTV

To determine time dependent production of TNF-α, IL-6, and VEGF in VILI

PLoS ONE 2016 11(10): e0165317.

Vascular endothelial growth factor (VEGF)

Thorax 2006;61:621-626

Gating strategy in flow cytometry

G1: monocyte (SSC^{low} CD11b+)

G2: Ly6C^{+high} monocyte (SSC^{low} CD11b+F4/80+ Ly6C^{+high})

G3: Ly6C^{+low} monocyte (SSC^{low} CD11b+F4/80+ Ly6C^{+low})

G4: favor PMN (SSC^{high} and CD11b+)

G5: Neutrophil (SSC^{high} CD11b+F4/80- Ly6C^{+int})

G6: VEGF expression of Ly6C^{+high} monocyte (SSC^{low} CD11b+Ly6C^{+high} VEGF+)

- G7: VEGF expression of Ly6C^{+low} monocyte (SSC^{low} CD11b+Ly6C^{+low} VEGF+)
- G8: VEGF expression of : neutrophil (SSC^{high} CD11b+Ly6C^{+int} VEGF+)

To determine time course for the recruitment of Ly6C^{+high}, Ly6C^{+low} monocytes, and neutrophils in VILI.

PLoS ONE 2016 11(10): e0165317.

6

(82.2%)

#

6

Depleted Ly6C^{+high} monocytes attenuated VILI

(A)

PLoS ONE 2016 11(10): e0165317.

Sorted Ly6C^{+high} monocytes are capable of secreting VEGF, leading to increased permeability in endothelial cells.

Int. J. Mol. Sci. 2019, 20, 1771

International Journal of *Molecular Sciences*

Article

Cyclooxygenase-2 Activity Regulates Recruitment of VEGF-Secreting Ly6C^{high} Monocytes in Ventilator-Induced Lung Injury

Tzu-Hsiung Huang ^{1,2}, Pin-Hui Fang ³, Jhy-Ming Li ^{2,4}, Huan-Yuan Ling ¹, Chieh-Mo Lin ^{2,5,6,*} and Chung-Sheng Shi ^{2,4,7,*}

COX-2-expressing Ly6C^{high} monocytes recruited into the lung during VILI.

(A)

Celecoxib significantly diminished the recruitment of Ly6C^{high}, but not Ly6C^{low}, monocytes in VILI.

Celecoxib attenuated ventilator-induced lung injury

(B)

Celecoxib significantly reduced pulmonary-vasculature permeability and improved pulmonary oxygenation in VILI.

Genomic markers

- 1. ARDS is a heterogeneous syndrome, with a diverse set of risk factors, etiologies, and outcomes.
- 2. Therefore, personalized treatment necessitates first understanding the underlying physiology for better risk stratification.
- 3. The National Heart Lung and Blood Institute has also emphasized on the use of biological methodology and translational model to pave new directions in addressing ARDS heterogeneity and its resolution.
- 4. Systematically integrate processes by high throughput and high content analytical platform.

RESEARCH

Open Access

Whole blood RNA sequencing reveals a unique transcriptomic profile in patients with ARDS following hematopoietic stem cell transplantation

Joshua A. Englert^{1*†}, Michael H. Cho^{2,3†}, Andrew E. Lamb², Maya Shumyatcher⁴, Diana Barragan-Bradford³, Maria C. Basil³, Angelica Higuera³, Colleen Isabelle³, Mayra Pinilla Vera³, Paul B. Dieffenbach³, Laura E. Fredenburgh³, Joyce B. Kang⁵, Ami S. Bhatt⁵, Joseph H. Antin⁶, Vincent T. Ho⁶, Robert J. Soiffer⁶, Judie A. Howrylak⁷, Blanca E. Himes^{4†} and Rebecca M. Baron^{3†}

Method

- Whole blood samples were used for gene expression profiling.
- RNA was extracted. The cDNA library were prep with primers: IFI44L (Hs00915292_m1), OAS2 (Hs00942643_m1), OAS3 (Hs00196324_m1), SPATS2L (Hs91916364_m1).
- RNASeq libraries were prepared with 100 ng–1 µg total RNA using Illumina TruSeq RNA-Seq v2 kit (Illumina, San Diego,CA). Sequencing of 75 base pair, paired-end reads was performed with an Illumina HiSeq 2500 instrument.

Illumina Tru-Seq RNA-seq protocol

Illumina HiSeq 2500 next-generation sequencing (NGS) platforms

mRNA-seq data analysis

RNA-Seq

Top differentially expressed genes upregulated in ARDS vs. ARDS-HSCT included immune response and interferon signaling genes (e.g. IFI44L, OAS3, LY6E, OAS2, USP18)

Gene	feature_name	log2FoldChange	Adjusted P
IFI44L	ENSG00000137959	-5.4	5.0E-09
OAS3	ENSG00000111331	-5.1	5.3E-09
SPATS2L	ENSG00000196141	-4.6	6.0E-09
LY6E	ENSG00000160932	-4.6	8.1E-09
USP18	ENSG00000184979	-5.0	1.1E-08
OAS2	ENSG00000111335	-4.6	1.4E-08
XAF1	ENSG00000132530	-4.1	5.7E-08
GYPA	ENSG00000170180	5.1	5.7E-08
RP11-609D21.3	ENSG00000279296	-4.0	8.4E-08
RHAG	ENSG00000112077	4.9	1.2E-07

Table 2 Top 10 most differentially expressed transcripts fromARDS vs ARDS-HSCT

1.Top differentially expressed genes upregulated in ARDS vs. ARDS-HSCT **included immune response and interferon signaling genes** (e.g. IFI44L, OAS3, LY6E, OAS2, USP18)

2. These genes were not differentially expressed in sepsis vs sepsis-HSCT.

				0
Cluster	Enrichment score	Representative category	Count	Adjusted P-value
1	11.05	Antiviral defense	30	3.9 × 10–19
2	5.51	Response to virus	17	1.3 × 10–5
3	3.84	Heme biosynthesis	7	2.8 × 10-5
4	3.29	Hereditary hemolytic anemia	9	4.2 × 1–05
5	3	Herpes simplex infection	16	1.8 × 10–2

 Table 3 Top results from DAVID Functional Annotation Clustering

Gene ontological category enrichment analysis with all 687 differentially expressed genes found that immune response- and interferon signaling-related pathways were statistically overrepresented

SCIENTIFIC REPORTS

Received: 3 September 2018 Accepted: 11 January 2019 Published online: 14 February 2019

OPEN Distinct Metabolic Endotype **Mirroring Acute Respiratory Distress Syndrome (ARDS)** Subphenotype and its **Heterogeneous Biology**

Akhila Viswan^{1,2}, Pralay Ghosh³, Devendra Gupta⁴, Afzal Azim³ & Neeraj Sinha¹

ARDS syndrome symptoms
ARDS phenotype characteristics
Inflammatory parameters, lung
edema
ARDS Endotypes Distinct disease entitles which may be present in clusters of phenotypes, but each defined by a specific biological mechanism

Endotype

Endotype 3

Endotype

Aim: To identify endotype that best stratify ARDS phenotype with predictive power in determining favorable outcome and accurate and sensitive enough when associated with clinical variable.

Method

核磁共振(NMR, Nuclear Magnetic Resonance)

在量子物理中,粒子會以角動量運動,具有「自旋」的內在性質,而變得有 磁性。利用這原理,為待測樣品製造出一個恆定的外加磁場,然後以一射頻 能量於其上,透過線圈偵測原子核自旋進動的頻率(測量磁場變化產生的電氣 信號,並透過傅立葉轉換得到頻譜),便能進一步分析出分子中的原子核構成, 進一步判讀出分子結構。 Figure 2. To stratify ARDS in two subphenotypes based on clinical characteristics and its predictability in **determining metabolic endotype** using NMR based metabolomics regardless of clinical heterogeneity.

The difference in metabolite intensity indicates difference in ARDS associated changes with respect to controls

Metabolic pathway of ARDS metabolic endotype

Subphenotype1 were classified as mild, moderate, and severe subjects based on severity with P/F ratio.

Subphenotype2 were classified as pulmonary etiologies and extra-pulmonary Pulmonary etiologies

mBALF Metabolites		Serum Metabolites		
Subphenotype1	Subphenotype2	Subphenotype1	Subphenotype2	
Lysine/arginine	Isoleucine	Tyrosine	3-hydroxybutyrate	
Alanine	Leucine	Phenylalanine	Lactate	
Isoleucine	Valine	Leucine/Lysine/Arginine	Alanine	
Leucine	Lactate	Methglutamine	Lipid	
Phenylalanine	Lysine/Arginine	Alanine	Glutamate	
Valine	Methionine	Glutamine	Pyruvate	
Tyrosine	Pyruvate	Valine	Choline	
Glutamate/proline	Succinate	Proline	Glucose	
Aspartic	Betaine	Histidine	Glycine	
Tryptophan	Taurine/Arginine	Leucine	Myoinositol	
Threonine	Threonine	Glycine	Phenylalanine	
Serine/Phenyalnanine	Serine/Phenyalanine	Glutamate	Valine	
Lactate	Myoinositol	Threonine	Proline	
Methionine	Tyrosine	Isoleucine	Leucine	
	Tryptophan		Isoleucine	
	Glutamate/proline		Threonine	

Table 2. List of significant metabolites from subphenotype 1 and subphenotype2 in mB.

Current and future work

Current and future work

Pulmonary epithelial/endothelial cell

American Journal of Physiology-Lung Cellular and Molecular Physiology 2012, 302:L992-L1002.

American Journal of Physiology-Lung Cellular and Molecular Physiology 2013, 305:L141-L153.