20195 AR ELR4GEFE G E §

THE ROLE OF EPIGENETICS IN HUMAN IMMUNE
RESPONSES AGAINST MYCOBACTERIUM
TUBERCULOSIS INFECTION

FEBOREAAFERAIRERATLEE &
e E A Rxxk Wi

FR - ki”r%ﬁgm B B £ )3;?&]! et e3 9y B?ji
Yung-Che Chen, M D., PhD

Division of Pulmonary and Critical Care Medicine,
Kaohsiung Chang Gung Memorial Hospital

HEHH : 2019%F12Ho7H (BHA7N) E409:20~10:00
ML SR 3F 301 B




I have No commercial interest.




Contents

= Epigenetics-mediated immune responses in patients
with active TB disease and macrophage infected with
M.TB in vitro

Aberrant DNA methylation: global/gene-specific
Histone modification patterns and histone
modifying enzymes
Non-coding RNA: microRNA

= (Clinical application
Epigenetic predictors for BCG responders
Host-directed immunotherapy

Future perspectives




Mycobacterium tuberculosis (MTB) elicits the
mlhost innate immune response by recruiting

macrophages/neutrophil, followed by adaptive
immune response, mainly comprised of T-cells.
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Dendritic cell (DCs) infected with Mtb migrate to the
draining lymph nodes, driving Th-1 cell differentiation

W The activated Th-1 cells migrate back to the lungs,
producing IFN-y and TNF-a, which activate macrophages
leading to bacterial clearance. Front. Mol. Biosci.2019; 6:105.
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Which factors play a major role in
determining TB susceptibility or resistance?

= Mycobacterium TB:

rpf genes (rpfA-E), cCAMP receptor proteins, Clp protease
gene regulator (Rv2745c;clgR), DosR regulon,

Drug-Resistant genes: rpoB, katG, inhA, rrs, tlyA, gyrA or
gyrB, atpE gene, Rv3547
= Comorbidities: HIV-TB co-infection, Diabetes,
Malnutrition, Smoking and alcohol

* Environmental factors: drugs, toxin, diet, exercise,
emotion, stress

» Host Genetic and Epigenetic factors: immune
competence

Tuberculosis (Edinb). 2018 Dec;113:200-214




As in several other human diseases, the role
of common genetic variants in pulmonary TB
seems to be scarce. Lancet Infect Dis 2018;18: e64-75

Most patients with latent TB infections (90—95%) never
develop clinical disease.

In household studies, 30-50% of contacts with heavy
short term exposure do not become infected.

Twins study under comparable environmental exposure
and social conditions
Higher concordance of TB in monozygotic than in dizygotic
Heritability of TST response at 72% and IGRA response at 39%

Independent gene association studies: an absence of
consistency and replication

GWAS: Common variants might have a little effect on
individual predisposition to adult pulmonary TB, at least
when considered as a single homogeneous phenotype.



A real challenge is to associate candidate genetic
variants with a biologically plausible mechanism that
W explains the epidemiological data for TB in which only

10% of the infected individuals will develop active TB.

Meta-Analysis | Odds Ratio NU':_bemf Risk of active | Race -
studies

dependent
mannose-binding 0.42-2.7 22 Decreased or  Africans,
lectin gene (MBL2) increased Americans,
Europeans
vitamin D receptor 0.87-0.92 54 Decreased South Asians,
(VDR) Caucasians
Interleukin-10/27/18 0.53-1.37/0.64- 28/11/8 Decreased or  Asians, Caucasians.
(IL-10/17/18) 1.36/1.17-1.43 increased
Toll-like receptor 0.61-5.82 16 Increased or Asians, Europeans,
(TLR) 1/2/6 decreased Africans, American
Hispanics.
TNF-a 31 Increased East Asians
IFN-y/IFNGR1 1.51-1.56/1.24 19/6 Increased Africans
HLA-Class Il: 0.5-2.27 11 Decreased or  Caucasians

DRPR4a/DOR4Aa /DDA - incroacad



Environmental factors and epigenetic modulation
‘Min humans: Various sources presents in the

environment regulates epigenetic parameters on
humans.
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Bi-directional

relationship between epigenetic
‘Mmodifications induced by colonizing pathogens /

the host immune PESPONSE. Pathogensand Disease, 74, 2016, ftwo82
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M. TB uses Rv1988/Rv2966¢/Rv3423.1/RV1346¢c to

mlhijack the host transcriptional machinery.

RV1988 —> H3R42me2: ROS-generating genes , TRAF3 .

Secretion of A RV e
Rv1988/Rv2966¢ by S . 2966¢ 5-mc-specific DNA methyltransferase

M. tuberculosis
[RV3423-1 ~S histone acetyltransferase: H3K9/H3K4

Down-regulate miR-155

Epigenetic inhibition of genes involved
in first line of defense (ROS, etc)

Dampens the immune response against Mtb

Survival and persistence of
M. tuberculosis
Allows

mycobacteria
to

Prevent autophagy

Repress antigen presentation

Inhibit phagosome maturation

Repress pro-inflammatory response

Microbial Cell | February
Inhibit chemotaxis 2016 | VO| 3 No. 2




Epigenetics refers to the requlation of gene expression

| ot caused by underlying changes in DNA sequence.

Heritable and Reversible.  Frontiersin Immunology July 2019 | Volume 10 | Article
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Aberrant DNA methylation
of
the immune-related genes
in active TB disease or
in response to M.tb infection




Methylation of DNA promoter or enhancer
regions generally results in transcriptional

silencing or repression.

Science. 2018 Sep 28;361(6409):1336-1340 A
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The depletion of 5mC at active regulatory is
‘Messential for active transcription regulation,
while intragenic 5mC performs fine-tuning and

supportive roles in transcription regulation.
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Dynamically methylated CpGs cluster into over 1
‘mmillion tissue specific differentially

methylated regions (DMRs), which are distal to
TSS and overlap with enhancers.
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Both Aged tissues and Tumor methylomes have global

hypomethylation and localized hypermethylation over
specific promoter regions.
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The global reduced methylation content can be caused
by down-regulated expression of DNMTs or
insufficient supply of folic acid in elderly
subjects. Frontiers in Genetics 2019 | Volume 10 | Article 107
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FIGURE 1 | Ovarview of mechanisms of dynamic DNA methylation during aging




A linear reverse relationship between
mlbiological age and DNA methylation (3-513 CpG

sites) of blood cells and various human
tissues with an average accuracy of 3-5 years
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Caloric restriction of 30% extends lifespan of a
small primate model by 50% through augmenting DNMT

and HDAC1/SIRT1 activity.
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DNA methylation state during innate and
mladaptive immune cell development,

differentiation, and function.

Translational Research 2019; 204:118

m DNA methylation-mediated changes

macrophage myeloid over lymphoid differentiation, monocyte-
to-macrophage differentiation, polarization

CD4+T differentiation into distinct phenotypes
lymphocytes

CD8+T cytolytic function, de-differentiates into memory
lymphocytes

B cell Differentiation, activation and plasma cell

differentiation.

Regulatory T Differentiation, suppressive capability, Th2-biased
lymphocytes subset



Association between gene-specific aberrant

I DNA methylation and active TB disease

Gene Region |DNA Gene or Clinical
Name MET protein Outcome
change |change

Vitamin D Genebody Hyper-Me Decreased GE  ActiveTB

(Exon, (9 CpG sites) of AKT, patients
receptor ' !
P 3'UTR) GSK38 ,FOX01 Vs-HS
Toll-like promoter :'lyclzoeg'\’_'e ) Depressed  ActiveTB Drug-
5CpGsites patients  resistantTB
receptor 2 TLR2 ve. HS
IL 18 promoter Hyper-Me Depressed Active TB
(2 methyl- patients
receptor 1 SNP) IL18R1 vs. HS
CYP27A1 promoter  Hypo-Me Decreased Active TB
1,25-dihydroxy Ppatients
vitamin D vs. HS

PLoS One. 2014 ;9(10):e110734
Thorac Dis 2017;9(11):4353-4357

Hum Immunol. 2011 ; 72(3): 262
J Infect. 2014;69(6):546-57




Whole genome DNA methylation analysis of
active pulmonary TB disease identifies novel

epigenotypes: PARP9/miR505/RASGRP4/GNG12 Met

and clinical phenotypes (under review at “J. Infection”)
phagy-related gene signaling pathway
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Gene-specific aberrant DNA methylation in
|| response to M.TB infection in vitro or in vivo

Gene |Region |DNA MET Functional
Name Outcome

IL6R promoter Hyper-Me Beijing/Wild
MTB-infected
THP-1
NLRP3 promoter De- NLRP3 Mtb H37Rv-  Increased
methylation  activation infected inflammatory
THP-1 cytokines
CD82/K promoter De- RUNXza- MTB-infected Decreased
Al1 methylation  binding  THP-1  inflammatory
induced  /BMDMs/Mice  cytokines/
CD82 phagosome
activation maturation,
enhanced MTB
survival

Biomed Res Int. 2016;2016:4323281. Experimental & Molecular Medicine (2018) 50:62

Tuberculosis (Edinb). 2016;98:139-48.



M.TB infection of human dendritic cells (DCs)
mlis assocliated with rapid and active de-

methylation at thousands of loci, mostly
localized to distal enhancers (3.5 KB to TSS
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Dendritic Cell immune gene expression changes
to M.tb infection is followed by active de-
methylation of 5371 CpG sites over distal
enhancers, mediated by TF binding. pnas 2019; 116:6938
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Aberrant histone modifications and
histone modifying enzymes

in active TB disease or

in response to M.TB infection




Amino-terminal tails of the core histones (H3,
H4) can be posttranslational covalent modified
by addition of methyl (red), acetyl (blue) or

phosphoryl moiety (orange)

DNA and an
octamer of four
core histones
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Low Histone Acetylation High Histone Acetylation

High levels of Methylation over High levels of Methylation
H3K9g, H3K27, H4K20 over H3K4, H3K36, H3K79,

i / transcriptional factor
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Histone acetylation exposes promoter and coding regions to
transcriptional requlators, including RNA polymerase (Pol Il) and

the various isoforms of the basal transcription factors (TFlls),
which results in transcriptional activation.

chromatin

nucleosome

transcriptional repression

Histone Acetyl-Transferase
(HAT) : Ac
Histone De-Acetylase (HDAC):

active
transcription

l coactivator l

Transcription
factor

transcriptional activation




Gene-activating H3 Lyss tri-methyl (H3K4me3)/H3K36me3/H3K79 mark
at the promoters of various genes.

Gene-repressive states established by the deposition at the promoters of

H3K9me3/H3K27me3- Nature Reviews | MolECulaR CEll BioloGy 20 | 2019 | 625
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Changes in chromatin structure due to altered
histone expression, histone modifications and DNA

methylation occur with aging and contribute to
cellular dysfunction.

Epigenetic features of aged cells
in model systems

= Abnormal nucleosome positioning
* Reduced nucleosome occupancy

Core histone expression — : ; :
. * Global increase in gene expression
i I - Transcriptional noise of repressed genes
I !
1 I
DNA methylation " — = Global hypomethylation

DNMT1 expression * Local hypermethylation at promoter regions

: Transcriptional activation of

inflammatory mediators
Histone repressio

marks (e.g. H3K27me3) Silencing of key longevity genes

| |
\4 \/

Aberrant J Leukoc Biol. 2018 October ; 104(4): 691—699
transcriptional

~ar¥tirvintioan

Precise control of
gene expression



Association between histone
" modification/modifying enzymes and active TB

Histone | Attribu | Change Clinica
te Outcome

H3K14 Global Hypo- PBMCsfrom  TNF-a lower
acetylatlon Active TB /IL12B one-year
(Ac) patientsvs. HS promoter- survival
S eKCIfIC
3K14
hypo-Ac
H3K27 Global Hyper- .  PBMCsfrom bacterial
e methylatio ActiveTB burden,
n patients vs. HS sym ptom
(me2/me3)
HDAC1 Non- Increased  PBMCsfrom Reversed
specific ActiveTB with anti-TB
de-Ac patients vs. HS S
KDM6B H3K27me Decreased PBMCsfrom Reversed
3 De-Me Active TB with anti-TB

patients vs. HS Treatment

I Am J Transl Res. 2017 Apr 15;9(4):1943-1955.



Altered expressions of Histone modifying
enzymes in response to M.tb infection in vitro

Histone

modifying | e

enzymes

Attribut | Regul
ation

Non-
specific de-
Ac

Non- Up
specific de-
Ac

H3K27me3 Up
(repressive)
De-Me

H4K20 Up
monometh
ylase

MTB H37Rv
infection

Mtb H37Ra
infection in
mice/THP-1
cells

MTB H37Rv
infected
macrophage
of mice

Mtb-infected
macrophages

Decreased
H3Ac over the
IL 12B
promoter

Increased
IL-10
expression

gl_mentlng
OTCH2-PI3K-

mTOR NF- KB
signaling

Induce NQOa1-
TRXR21

Functional
Outcome

Increased
survival of
intracellular
MTB

Increased
MTB growth

Foamy
Macrophage,
M2
polarization

M2
polarization

Tuberculosis (Edinb). 2018 Jan;108:118-123. PLoS Pathog. 2016 Aug 17;12(8):e1005814.

J Infect Dis. 2017 Aug 15;216(4):477-488.



Altered Histone modification patterns in
[ [response to M.tb infection in vitro

Histone

modificati
on
H3 and H4 Hyper-Ac

Mtb-infected

Increased

Functional
Outcome

increased

RNA Pol Il bindingto MMP-1
MMP-1 promoter secretion

macrophages
/epithelial cells

H3KgMe Hyper- Mtb-infected down-regulated the inhibits
(repressive) Me macrophages expression of antigen
CITA/MHC-II presentation
H3K4Me  Hypo- ESAT-6 - Inhibit class I Inhibit
(active Me/Ac stimulated transactivator (CIITA) MHC I
mark) macrophage
H3R42Me Hyper- H37Rv Mtb- Rv1988 repress NOX1, Increased
(répressive) Me infected THP1 ~ NOXz, NOS2, TNFAIP2, MTB survival
and lincRNA,
ENSG00000250584

Adv Protein Chem Struct Biol. 2017;106:71 Front Immunol. 2017 May 24;8:602.

J Biol Chem. 2017 ;292(17):6855-6868.



Altered microRNA (miR) expressions
in active TB disease or
in response to M.TB infection




MicroRNAs (miRNAs) are small non-coding ssRNAs,

mr~22 nucleotides in length, are produced by two
RNase III proteins (Drosha/Dicer), regulate up
to 60% of the protein-encoding genome.
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studies:
378a-3p, 155.

53 miRNA differentially expressed in TB p’ts vs. HS.
Only miR-21 showed an overlap in up / down regulation.
Only 8 of these miRNA were identified in 2 or more
miR-20b,

21-5p, 22-3p, 26a, 29a-5p, 29c-3p,

Tuberculosis 118 (2019) 101860
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hsa-miR-339-5p

1lsa-miR-l4()a

Downregulated

%sa-miR-652

Yisa-miR-486- 5p R-lI
115& miR-449a

.

’lsa-miR-R-&c-Sp
%sa-mir-182

1\»:1 let-7a

Ysa-mir-138- Sp_R-2
115‘1 miR-129-5p

11%.’1—Ie(-7f



miRNAs either promotes or inhibits important

pathways and cellular responses in macrophages,
dendritic cells and CD4+ T cells against M.tb.

CD4 T cell

[ Dendritic cell ]

T / miR-125b-5p | [ mir-29 | [ mir-155 |

antigen pro-inflammatory induce _L _L _l_

presentation cytokine Th17 [ STATS ] [ IFN—y ] [ survival I
s

|

Jv Cancer Letters
431 (2018) 22—-30

M. tuberculosis

| IFN-y
MIR144"
miR-144 5p
miR-33/33"
miR-30a miR-125a-3p
miR-27a miR-155 miR-582-5p
miR-146a miR-20a miR-106-5p miR-223
miR-125 miR-223 miR-30a miR- 142 3p Let-7b-5p miR-223 miR-132
miR-32-5p Let-7F miR-155 miR-155 miR-155 miR-206 miR-126
L AL ke
TNF—= ——. M2 2 Response
IL.6 I NF-kB l I NLRP3 ] I autophagy | I Mtb killing I polarization I apoptosusl [ MMPs I to IFN-—y
T T T — T T i1
miR-155 | miR-20b | miR-17-5p [ miR26a | | mir-125a | | mir-133a |
miR-365 miR-26a
miR-155

/
\

Macrophage




List of immune-suppressive miRNAs in TB

MirRNA Mechanism of action Final effect
Overexpression of [L-10 Suppbression of iMmmune-
miR-21 mRNA and Down-regulation resp?)nse 20ainst TB
of IL-12 mRNA P J
Intercellular growth of
miR-29 Degradation of IFN-Y tubercle bacillus within
macrophages
— . . __ |Suppression of immune-
mMIR-99b Decline expression of TNF-a T
=y ) Suppression of iImmune-
miR-125b Blockade TNF-a mRNA T
Suppression of immune-
miR-27b Suppression of NF-kB response against TB and
signaling pathway intercellular growth of
MTB
glicualion olLLEts Suppression of immune-
miR-1178 expression and inhibition of PP

pro-inflammatory cytokines

response against TB

Adv Biomed Res. 2019; 8: 3




List of immune-effective miRNAs in TB

MirRNA Mechanism of action Final effect
Stability of TNF-a mRNA and Eff;'nesr;tl\'ﬂr?g“”g\sgizonse
mIR-155 activation of MAPKs signaling J > P A
athway phagocytosis and elimination
P of MTB
miR-424 Dysregulation of NFI-A78 Macrophage maturation and
differentiation
Granulocytes production and
MiR-223 Targeted Mef2c stimulation pro-inflammatory
response
. . : Increase of pro-inflammatory
miR27a B;(zﬁ\l/(\;gg IRAK4 signaling cytokines such as IL-B, IL-6
pathway and IFN-y
=y targeting the NLRP3/caspase- . :
mIR-20b 1/IL-1B pathways Induce inflammation process
Decline monocytes apoptosis alocticn.chant,
mMiR-582-5p y'=S abop tuberculosis immune

via down-regulating FOXO1

response

Adv Biomed Res. 2019; 8: 3




BCG-induced trained innate immunity
through epigenetic mechanisms




How dose the BCG vaccine induce specific and
non-specific immunity?
What factors influence the immune responses

induced by BCG? Front Immunol. 2019 Jun 11;10:1317
= The BCG vaccine has been used since 1921 to prevent TB and
is considered to be the world’s most widely used vaccine.

= Specific effect of BCG : about 60% efficacy

good protection against disseminated and pulmonary TB disease in
young children

variable efficacy against pulmonary TB in adults when given later
lasting for up to 15 years in the United Kingdom, 30—40 years in
Norway, and even as long as 5o—60 years in Alaska.

= Non-specific effects of BCG : about 25% efficacy

beneficial effects on all-cause mortality in infants (low birth weight )
in West Africa.

There was no difference between outcomes in normal birth weight
infants or premature infants in this European setting.
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BCG Protection against meningeal and miliary TB was
also high in infants (RR, ©.1; 95% CI, .01-.77) and

children stringently tuberculin tested (RR, ©0.08;
95% CI, .03-.25).

Clinical infectious diseases 2014, 58 (4). pp. 470-80 e Ui

. cases'PY's cases/PY's
Rate Ratio (95%Cl)
: 0.08 (0.00, 1.51) or2014 5M 840
il i 10% 0,12 (0,01, 2.14) oMM3rF4a 41425

Randomized or Quasi-randomized Trials

Neonatal Vaccination

Saskatchewan Infants (Ferguson) 1933 Canada® {
I
Ny

L ]

Chicago Infants TB HH (Rosenthal) 1241 USA

School age vaccination: re-TST negativity

Mative American (Aronson) 1935 LUSA —_— 010 (0.03, O0.31) 32239 2710442

8 /o 0.04 (0,00, O.73) o/210800 10186800

MRS (MRC) 1850 UK

1

0.54 (0.08, 3.84) 2944519 2510872

Georgia/Alabama (Palmer) 1950 LISA | >

528 (0.25, 109.94) 2256585 QR2TOETO

W/

Owerall (Heterageneity: p = 0.135) <T.> 015 (0.08, 0.31)
T

. = = 1 2 5 10 100
BCG reduce risk of meningeal/miliary TB Sttt




Primary analysis with 14 studies (n=3855)
‘Mestimated an overall risk ratio of 0.81 (95%

confidence interval 0.71 to 0.92), indicating
BCG 19% protective efficacy against latent TB
infection among vaccinated children. BMJ. 2014;

Nowith TB
Risk Ratio |

Study Vaccinated Not vaccdinaled Risk ratio (95%. C1)

Elispot s

QuantiFERON . Al 18

0.81 [l 10%

R

BCG protect TB infection |




Subgroup analysis of six studies (n=1745) that

mlreported the number of people who progressed
to active tuberculosis disease during screen.

Latent TB infection O Risk Ratio GISeEl

Active TB ~ P — 2% 0.0840.02600.25
ennut 2005 Sise % - | ;

—= e

Latent Infection to 0f110 =
active TB disease - -—|

- -

L
| ————

| ——T e —

BMJ. 2014; 349: 94643 U BCG protective Ml 58%

man-protective




Non-Specific Effect: SIX RCTs showed that BCG
reduced mortality from diseases other than TB by 25%

(95% CI 6% to 41%).

Table 2 Controlled trials of heeller; tof BOG on mortality from causes ofher than fuberculosis amand children i the USA and the UK {reported in
papers published between 1948 and 1961)

Reduction in mortality

Study Age followed Allocation BLG No BCG (057% CIJ

I [-13years Altermats N=231: 3/1261 {2.4%| N=220: 3/1320 {2.3%) Lo (082 to B6%]1
JSA* (15 years Random N=306: 4920135 (24.3%) N=303: 51/1830.2 (177%) 1% -33% to %)t
IV (-0 years Alternate N=151: 49/16 IS%I NMW%HWGHﬂ 1% (-21% to d6%

I 14-21 years (dd/even N=6700: 75700 {1.0%} N=6500: 10/6500 {1 9ol 0% (-9 to TR
I (16 years Alternate NE%]H%QU%ﬁ N=528: 25/528 (41 3% W% (Lo to THy

I 1421 years (dd/even N=14100: 8/14100 0.6%)s N=16/13200 {1 2%aff 030 (-2t 83T

Tota 5% (% to 1%)1

Tiwins™ [-17 months Twing 1[5 (B9)=0.20 (0.02-1.68)"* DI 203 (164)=1.3 2-381* p<0.001




Innate immune cells are able to undergo long-
term adaptation and acquire enhanced

capability to respond to certain stimuli,
termed innate immune memory or trained immunit

Innate immune memory | Adaptive immune memory I

.||l F'y
o O Metabolic reprogramming : O Clonal expansion
g' W~ | Epigenetic reprogramming c ,O O ) t' Anrt:gen-lE'pEtFmClrf .
2 | . Enhanced effector funclions -% | CIENeration o ong-astng memory ces
2 : @ @ *E : o O Secondary response
© S © ==z & 1D antigen
, =@ Trained’ response
S ' Innate immune cells A\ o 2 | TandBcels /
E | ., : g |
El | . > |
- \ y R
E | Earl __E | Primary response
=N e \ Clearance % , b to anfigen
g A -~ First respons \ & \
o | |
= | |
th | / - \_ I
L e = o o = : ____________ . _.. b oo oo oo oo o e e e e e e e e e e e ._'
T T time T time
First challenge Second challenge Initial EIW ure Secondary exposure
1o an antlgen to the same antlgen

Current Opinion in Immunology 2019, 56:10-16 Currsnt Cpinian in Immunology




Trained immunity: Monocyte (Mo) memories of past
encounters with microbial/nonmicrobial products can
elicit vastly different responses to future exposures
on differentiation to macrophages (Mu).

* Trained immunity:

induced by BCG, b-
TRA,N'NG )\/{% ENHANCED glucan, or oxLDL, 3
CYTOKINE enhanced nonspecific

response to subsequent
infections

enhancing the
inflammatory and

\ < antimicrobial properties
'K_/_'jg_ 0 \ E%P%g of innate immune cells.

J & LU = |[mmune tolerance:

)\/(( primary stimulation with
s /; LPS induces a persistent
IMMUNO-

PRODUCTION

B—GLUCAN

refractory state,

PARALYSIS markedly reduced .
TOLERANCE Wv\m oy

ANTIOXIDANTS & REDOX SIGNALING Volume 29, Number 11, 2018




Latent enhancers prime a transcriptional

mlmemory in macrophages via Epigenetic change.
Constitutively unmarked distal

regulatory elements acquire
epigenetic features of enhancers
(open chromatin: H3K4m1 and
H3K27ac) in response to specific
stimuli.

constitutively
unmarked B_glucan tralnlng ANTIOXIDANTS &
Z REDOX SIGNALING

On removal of the activating
stimulus, regions that retain the

H3K4m1 enrichment mediate a
faster and more robust response
to re-stimulation.

stimulus V0|Ume 29’ Number 11,

2018

latent / de novo enhancer active promoter



BCG vaccination induces trained immunity and this
effect is beneficial both for protection against TB,

as well as unrelated non-mycobacterial infections.

— Persistent H3K4m3 enrichment at the promoters
4 of genes encoding TNF-a, IL6, and TLR4

[ \training (H3K4me3)
| Quinfin et al., CHM, 2012

BCG vaccination

=
-}g:

S homeostasis

folerance (HaK4med)

Foster et al., Nature 2007
>

innate immune response
__-"-_'.I
1

t duration (daysweaks?) '

primary secondary

i mEmt Infection
Imecilon Seminars in Immunology 26 (2014) 512—517



After BCG i1s taken up by the monocyte, it 1is
recognized by the NOD2 receptor, which upon
activation induces epigenetic and metabolic

reprogramming of the cell (H3K4me3), leading to an
enhanced, non-specific response to a subsequent
infection through an increased production of
cytokines and reactive oxygen species

BCG IFNy Clin Microbiol X Pnhanced cytokine
 © Infect 2019;":1 response o _ o
- (8 S Q"
 © TNFa g T o ()
2
. IL-1B e ©

H3K4 tri-
methylation

. i ROS S e
Priming

Restimulation



BCG training-induced increased frequency of
permissive H3K4me3 and reduced presence of
inhibitory H3K9me3 at the promoters of

cytokine, receptor and metabolic pathway
component encoding genes.

e - sl
o < © j./f“'f//‘ u TLRAa

e’ CD14a

CD11b

Oxidative :
phosphorylation \ / I SR I - H3K4rne8'
liL-6 liL-1p © H3KomMe3
Il TNFa 1EGF
\ | 1IN IPDGF-AB/BB Glucose
Heterologous I GIUtam|n0|y5| L L actate

microor: ganism

NK cells @& cbso
LS
< : -
< Phosphorylated
+BCG < mTOR
| e ATP
“
L

Future Microbiol. (2018) 13(10), 1193-1208 e



Anti-mycobacterial activity correlates with
mlaltered DNA methylation pattern in immune
cells from BCG-vaccinated subjects.

BCG
3 4 responders vs. 4 non-responders:

enhanced anti-mycobacterial
activity in Mtb-infected

aPBMCs  NKcells macrophages and increased IL-13

[ 4
M'iMS DNA methylation prOd uction

analysis T

A

Functional assays

EWAS

3w 4m 8m

Ra

6 Promoters displaying persistent hypo-Me at all
time points (3 weeks, 4 months, 8 months): [FN-v,
RASALI1, GIMAP7, ADCY3, ATXN1, DIABLO

221 (6.4)

14 (0.4) 21 (0.6) 1 194:(31.5)

P 21 Promoters with persistent hyper-Me: TLR6,
i SRD5A2, SOX5, GNG7, SBNO2, SULT1C , NFKBIE,
: Responders TRIM2, GPR84, SPATS2, CD59, ATXN1, NCOR?2,
ADARBI1, LOC404266, SRGAP3, PIWIL2, SPG20,
TSPAN4, CSGALNACT1

! ; : : 3 ScleNtlflc REPOrtS 2017 |7: 12305

-Log10 (adjusted p values)

i AS
MympBhocyte achivation




43 differentially methylated genes in PBMCs
isolated from responders vs. non-responders
at the time point before BCG vaccination--

enriched for actin-modulating pathways
predicting differences in phagocytosis.

® NF-kB is activated and signals survival
@ p75NTR signals via NF-kB

@ p75NTR recruits signalling complexes

» p75NTR negatively regulates cell cycle via SC1
) p75NTR regulates axonogenesis

) p75 NTR receptor-mediated signalling

#® Axonal growth inhibition (RHOA activation)

) Cell death signalling via NRAGE, NRIF and NADE

@ NRIF signals cell death from the nucleus

¢ NADE modulates death signalling

) NRAGE signals death through JNK

f Y ,~::§§;::-._4 — % A
S R ] a2 EPIGENETICS
>~ "1 2019, VOL. 14, NO. 6, 589-6014¢ AR, | e



Future perspectives:
Epigenetic targets
for
Host-Directed immunotherapy?




Several molecules have been screened for altering
the DNA methylation status associated with the

disease outcome and are currently in different
phases of clinical trial.

DNA | P O0TIP Y s [aberrant methytation l Biochim Biophys

Acta. 2017
l February ; 1863(2):
‘ 518-528.
ONMT1 » Transcript repression (Promotor) I
DNMT3A ||DNA Methylation * Transcript activation (gene body)
DNMT3B « Genome stability/repair

DNMT3L

IDNMT | " Disease Outcome:

* Different Cancers ( colon, pancreas, liver,

FDA Approved : 5 Azacytidine | kidney, breast, melanoma )
9Aza- deoxycytidine

Clinical tnial Zebularine
Hydralazine
Other Studies : Folic a, Polyphenols,
like quercetin, catechins |
EGCG

* Neurodegenerative diseases ( Alzhemir,
Parkinson, Huntington )




Clinical trials in aberrant histone

mlmodifications associated with disease outcome

* Repressed Chromatin

! ) [ @J — « Transcriptional Repression
Heterochromatin m _ W——%
— — A

| CBP,P300| HDAC | + Vorinostat
1P‘C~AF f‘., 1-11 +  Romidepsin
e + Panobinostat(Ph Ill)

I + Belinostat
Valporic a (Ph )

* Active Chromatin
* Transcriptional Activation

iHat|  LiHMT !
' Clinical Trials: | [ Under Study: |

Curcumin (phllj Chaetocin

Garcinol BIX-01294
Anacardic acid| | UNC0224

DZNep

Outcome :
Inflammatory Gene activation (TNF-a, IL-8)
Neurodegenerative disorders

— —




miRNAs may influence the outcome of bacterial

mlinfection by regulating autophagy/xenophagy
responses in host cells

Semin Cell Dev Biol. 2019 pii: S1084-9521(18)30239-8
. . A MicroRNAs th .
g Malignancy B Neurodegenerative D’s
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Host-directed therapies: Xenophagy may be
initiated by valproic acid to allow histone
I

acetylation followed by chromosome unwinding
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Non-specific Histone de-acetylase inhibitors

| impair the host immune response (autophagy &
ROS) against MTB. Tuberculosis 118 (2019) 101861

| Macrophage viability _.
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N |
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Gene-Editing: clustered regularly interspaced

short palindromic repeat (CRISPR)
I . N
Sequence-specific RNAi: microRNA mimic/siRNA

DNA methylation
Therapeutic approaches deliver a de- Posttranscriptional
+ DNA methylation inhibitors methylating enzyme, Therapeutic approaches miR mimic
« Methionine (dietary) 5-azacytidine, to a /siRNA

+ CRISPR-based editing specific promoter for
— 2 weeks

highly selective targeting

| ] mRNA ' DOSOME
promoter (3ene /\/ o : ‘
elements - 1 :> % 5l Y :> /Q/ @
B : coding sequence 3 UTR
RNA transcription /\J ransiation protein

I histones X long noncoding RNAs

PR g L S !

Posttranslational modifications | ;diafural a[ptlsens§ tr}an.scnpts : Europeanjournalof
Therapeutic approaches Toghs ixsunidtos st paediatricneurology
IL + Oligonucleotides (antiNATs) , 2019

- ——————

* Histone deacetylase inhibitors




The dCas9-p300 HAT core fusion protein was
‘Mexpressed in cells, which promoted lysine

acetylation of histones at a specific genomic
locus targeted by the guide RNA sequence.

CRISPR-associated Enzvme
protein g (casg) (e.g.. p300 core)

NModifications
dCaso ? (e.g.. acetyiation)

——

(Guide RN A

Current Opinion in
Chemical Biology
2018, 46:10-17
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Take Home Message (1)

= M.TB uses virulent factors Rv1ig88/Rv2966¢c/Rv3423.1/
RV1346c¢ to hijack the host transcriptional machinery
through epigenetic regulations.

= Association of active TB disease with
Aberrant DNA Met over VDR, TLR2, IL18R1, CYP27A1 genes
H3K14 hypo-Ac (TNF-a/IL12-B), HDAC1, KDM6B
At least 53 differentially expressed miRNAs

= M.TB infection in vitro leads to

de-Met of the NLRB3/CD82 gene promoters/1700 CpGs over
distal enhancers

H3/H4 hyper-Ac, H3Kg hyper-Me, H3R42 hyper-Me, H3K4
hypo-Me/Ac, HDAC1/6, KDM6B, SET8

Immune-surppressive miRs: 21, 29, 99b, 125b, 27b, 1178

Immune-effective miRs: 155, 424, 223, 273, 20b, 582




Take home message (2)

= Specific and Non-specific effects of BCG vaccine via
trained innate immunity (innate immune memory)
H3K4 hyper-Me and H3Kg hypo-Me at the promoters of

cytokine, receptor and metabolic pathway component
encoding genes

BCG Responder: IFN-y promoter DNA hypo-Me, TLR6
promoter DNA hyper-Me

= Future perspectives for research:

Epigenetic marks for Early clearance/Progression from LTBI
to active TB D’s; single cell methylome

CRISPR-based gene editing to deliver de-methylation
agent/histone modifying enzymes to specific genomic locus

Highly selective antagomiR/miRNA mimic to enhance or
surppress specific sequence of target genes
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